bannerbanner
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
60 из 80

2306

Lorenz M, Jochmann N, von Krosigk A, et al. Addition of milk prevents vascular protective effects of tea. Eur Heart J. 2007;28(2):219–23. https://pubmed.ncbi.nlm.nih.gov/17213230/

2307

Ahmad AF, Rich L, Koch H, et al. Effect of adding milk to black tea on vascular function in healthy men and women: a randomised controlled crossover trial. Food Funct. 2018;9(12):6307–14. https://pubmed.ncbi.nlm.nih.gov/30411751/

2308

Serafini M, Testa MF, Villaño D, et al. Antioxidant activity of blueberry fruit is impaired by association with milk. Free Radic Biol Med. 2009;46(6):769–74. https://pubmed.ncbi.nlm.nih.gov/19135520/

2309

Serafini M, Bugianesi R, Maiani G, Valtuena S, De Santis S, Crozier A. Plasma antioxidants from chocolate. Nature. 2003;424(6952):1013. https://pubmed.ncbi.nlm.nih.gov/12944955/

2310

Duarte GS, Farah A. Effect of simultaneous consumption of milk and coffee on chlorogenic acids’ bioavailability in humans. J Agric Food Chem. 2011;59(14):7925–31. https://pubmed.ncbi.nlm.nih.gov/21627318/

2311

Получают из побегов аспалатуса линейного, кустарника из семейства бобовых. – Примеч. ред.

2312

Chen W, Sudji IR, Wang E, Joubert E, van Wyk BE, Wink M. Ameliorative effect of aspalathin from rooibos (Aspalathus linearis) on acute oxidative stress in Caenorhabditis elegans. Phytomedicine. 2013;20(3–4):380–6. https://pubmed.ncbi.nlm.nih.gov/23218401/

2313

Yoo KM, Hwang IK, Moon B. Comparative flavonoids contents of selected herbs and associations of their radical scavenging activity with antiproliferative actions in V79–4 cells. J Food Sci. 2009;74(6):C419–25. https://pubmed.ncbi.nlm.nih.gov/19723177/

2314

Damiani E, Carloni P, Rocchetti G, et al. Impact of cold versus hot brewing on the phenolic profile and antioxidant capacity of rooibos (Aspalathus linearis) herbal tea. Antioxidants (Basel). 2019;8(10):499. https://pubmed.ncbi.nlm.nih.gov/31640245/

2315

Cleverdon R, Elhalaby Y, McAlpine MD, Gittings W, Ward WE. Total polyphenol content and antioxidant capacity of tea bags: comparison of black, green, red rooibos, chamomile and peppermint over different steep times. Beverages. 2018;4(1):15. https://www.mdpi.com/2306-5710/4/1/15

2316

Peterson J, Dwyer J, Jacques P, Rand W, Prior R, Chui K. Tea variety and brewing techniques influence flavonoid content of black tea. J Food Compost Anal. 2004;17(3–4):397–405. https://www.sciencedirect.com/science/article/abs/pii/S0889157504000614

2317

Saklar S, Ertas E, Ozdemir IS, Karadeniz B. Effects of different brewing conditions on catechin content and sensory acceptance in Turkish green tea infusions. J Food Sci Technol. 2015;52(10):6639–46. https://pubmed.ncbi.nlm.nih.gov/26396411/

2318

Pérez-Burillo S, Giménez R, Rufián-Henares JA, Pastoriza S. Effect of brewing time and temperature on antioxidant capacity and phenols of white tea: relationship with sensory properties. Food Chem. 2018;248:111–8. https://pubmed.ncbi.nlm.nih.gov/29329833/

2319

Nikniaz Z, Mahdavi R, Ghaemmaghami SJ, Yagin NL, Nikniaz L. Effect of different brewing times on antioxidant activity and polyphenol content of loosely packed and bagged black teas (Camellia sinensis L.). Avicenna J Phytomed. 2016;6(3):313–21. https://pubmed.ncbi.nlm.nih.gov/27462554/

2320

Malik VS, Li Y, Pan A, et al. Long-term consumption of sugar-sweetened and artificially sweetened beverages and risk of mortality in US adults. Circulation. 2019;139(18):2113–25. https://pubmed.ncbi.nlm.nih.gov/30882235/

2321

Zhang YB, Jiang YW, Chen JX, Xia PF, Pan A. Association of consumption of sugar-sweetened beverages or artificially sweetened beverages with mortality: a systematic review and dose-response meta-analysis of prospective cohort studies. Adv Nutr. 2021;12(2):374–83. https://pubmed.ncbi.nlm.nih.gov/33786594/

2322

Huang C, Huang J, Tian Y, Yang X, Gu D. Sugar sweetened beverages consumption and risk of coronary heart disease: a meta-analysis of prospective studies. Atherosclerosis. 2014;234(1):11–6. https://pubmed.ncbi.nlm.nih.gov/24583500/

2323

Imamura F, O’Connor L, Ye Z, et al. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. BMJ. 2015;351:h3576. https://pubmed.ncbi.nlm.nih.gov/26199070/

2324

Zhang YB, Jiang YW, Chen JX, Xia PF, Pan A. Association of consumption of sugar-sweetened beverages or artificially sweetened beverages with mortality: a systematic review and dose-response meta-analysis of prospective cohort studies. Adv Nutr. 2021;12(2):374–83. https://pubmed.ncbi.nlm.nih.gov/33786594/

2325

Gardener H, Elkind MSV. Artificial sweeteners, real risks. Stroke. 2019;50(3):549–51. https://pubmed.ncbi.nlm.nih.gov/30760171/

2326

Huang CW, Wang HD, Bai H, et al. Tequila regulates insulin-like signaling and extends life span in Drosophila melanogaster. J Gerontol A Biol Sci Med Sci. 2015;70(12):1461–9. https://pubmed.ncbi.nlm.nih.gov/26265729/

2327

Didelot G, Molinari F, Tchénio P, et al. Tequila, a neurotrypsin ortholog, regulates long-term memory formation in Drosophila. Science. 2006;313(5788):851–3. https://pubmed.ncbi.nlm.nih.gov/16902143/

2328

Griswold MG, Fullman N, Hawley C, et al. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2018;392(10152):1015–35. https://pubmed.ncbi.nlm.nih.gov/30146330/

2329

Degenhardt L, Charlson F, Ferrari A, et al. The global burden of disease attributable to alcohol and drug use in 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Psychiatry. 2018;5(12):987–1012. https://pubmed.ncbi.nlm.nih.gov/30392731/

2330

CDC Morbidity and Mortality Weekly Report. Alcohol-attributable deaths and years of potential life lost – United States, 2001. http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5337a2.htm. Published September 24, 2004. Accessed October 31. 2021.; https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5337a2.htm

2331

Martinez P, Kerr WC, Subbaraman MS, Roberts SCM. New estimates of the mean ethanol content of beer, wine, and spirits sold in the United States show a greater increase in per capita alcohol consumption than previous estimates. Alcohol Clin Exp Res. 2019;43(3):509–21. https://pubmed.ncbi.nlm.nih.gov/30742317/

2332

Editorial. Alcohol and health: time for an overdue conversation. Lancet Gastroenterol Hepatol. 2020;5(3):229. https://pubmed.ncbi.nlm.nih.gov/32061324/

2333

Seyedsadjadi N, Grant R. The potential benefit of monitoring oxidative stress and inflammation in the prevention of non-communicable diseases (NCDs). Antioxidants (Basel). 2020;10(1):15. https://pubmed.ncbi.nlm.nih.gov/33375428/

2334

Guest J, Guillemin GJ, Heng B, Grant R. Lycopene pretreatment ameliorates acute ethanol induced NAD+ depletion in human astroglial cells. Oxid Med Cell Longev. 2015;2015:1–8. https://pubmed.ncbi.nlm.nih.gov/26075038/

2335

Chen H, Chen T, Giudici P, Chen F. Vinegar functions on health: constituents, sources, and formation mechanisms. Compr Rev Food Sci Food Saf. 2016;15(6):1124–38. https://pubmed.ncbi.nlm.nih.gov/33401833/

2336

Ali Z, Wang Z, Amir RM, et al. Potential uses of vinegar as a medicine and related in vivo mechanisms. Int J Vitam Nutr Res. 2018;86(3–4):1–12. https://pubmed.ncbi.nlm.nih.gov/29580192/

2337

Bagnardi V, Rota M, Botteri E, et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis. Br J Cancer. 2015;112(3):580–93. https://pubmed.ncbi.nlm.nih.gov/25422909/

2338

Choi YJ, Myung SK, Lee JH. Light alcohol drinking and risk of cancer: a meta-analysis of cohort studies. Cancer Res Treat. 2018;50(2):474–87. https://pubmed.ncbi.nlm.nih.gov/28546524/

2339

Testino G, Leone S, Sumberaz A, Borro P. Alcohol and cancer. Alcohol Clin Exp Res. 2015;39(11):2261. https://pubmed.ncbi.nlm.nih.gov/26332802/

2340

Brien SE, Ronksley PE, Turner BJ, Mukamal KJ, Ghali WA. Effect of alcohol consumption on biological markers associated with risk of coronary heart disease: systematic review and meta-analysis of interventional studies. BMJ. 2011;342:d636. https://pubmed.ncbi.nlm.nih.gov/21343206/

2341

Voight BF, Peloso GM, Orho-Melander M, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380(9841):572–80. https://pubmed.ncbi.nlm.nih.gov/22607825/

2342

Linsel-Nitschke P, Götz A, Erdmann J, et al. Lifelong reduction of LDL-cholesterol related to a common variant in the LDL-receptor gene decreases the risk of coronary artery disease – a Mendelian randomisation study. PLoS One. 2008;3(8):e2986. https://pubmed.ncbi.nlm.nih.gov/18714375/

2343

Britton AR, Grobbee DE, den Ruijter HM, et al. Alcohol consumption and common carotid intima-media thickness: the USE-IMT Study. Alcohol Alcohol. 2017;52(4):483–6. https://pubmed.ncbi.nlm.nih.gov/28525540/

2344

Отложение солей кальция на стенках артерий, питающих сердце. – Примеч. ред.

2345

Pletcher MJ, Varosy P, Kiefe CI, Lewis CE, Sidney S, Hulley SB. Alcohol consumption, binge drinking, and early coronary calcification: findings from the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Epidemiol. 2005;161(5):423–33. https://pubmed.ncbi.nlm.nih.gov/15718478/

2346

McFadden CB, Brensinger CM, Berlin JA, Townsend RR. Systematic review of the effect of daily alcohol intake on blood pressure. Am J Hypertens. 2005;18(2):276–86. https://pubmed.ncbi.nlm.nih.gov/15752957/

2347

Xi B, Veeranki SP, Zhao M, Ma C, Yan Y, Mi J. Relationship of alcohol consumption to all-cause, cardiovascular, and cancer-related mortality in U.S. adults. J Am Coll Cardiol. 2017;70(8):913–22. https://pubmed.ncbi.nlm.nih.gov/28818200/

2348

Xi B, Veeranki SP, Zhao M, Ma C, Yan Y, Mi J. Relationship of alcohol consumption to all-cause, cardiovascular, and cancer-related mortality in U.S. adults. J Am Coll Cardiol. 2017;70(8):913–22. https://pubmed.ncbi.nlm.nih.gov/28818200/

2349

Stockwell T, Zhao J. Alcohol’s contribution to cancer is underestimated for exactly the same reason that its contribution to cardioprotection is overestimated. Addiction. 2017;112(2):230–2. https://pubmed.ncbi.nlm.nih.gov/27891690/

2350

Doll R, Peto R, Boreham J, Sutherland I. Mortality from cancer in relation to smoking: 50 years observations on British doctors. Br J Cancer. 2005;92(3):426–9. https://pubmed.ncbi.nlm.nih.gov/15668706/

2351

Stockwell T, Zhao J, Panwar S, Roemer A, Naimi T, Chikritzhs T. Do “moderate” drinkers have reduced mortality risk? A systematic review and meta-analysis of alcohol consumption and all-cause mortality. J Stud Alcohol Drugs. 2016;77(2):185–98. https://pubmed.ncbi.nlm.nih.gov/26997174/

2352

Sattar N, Preiss D. Reverse causality in cardiovascular epidemiological research: more common than imagined? Circulation. 2017;135(24):2369–72. https://pubmed.ncbi.nlm.nih.gov/28606949/

2353

Costantino G, Montano N, Casazza G. When should we change our clinical practice based on the results of a clinical study? The hierarchy of evidence. Intern Emerg Med. 2015;10(6):745–7. https://pubmed.ncbi.nlm.nih.gov/25860505/

2354

Huynh K. Reducing alcohol intake improves heart health. Nat Rev Cardiol. 2014;11(9):495. https://pubmed.ncbi.nlm.nih.gov/25072907/

2355

Stott DJ. Alcohol and mortality in older people: understanding the J-shaped curve. Age Ageing. 2020;49(3):332–3. https://pubmed.ncbi.nlm.nih.gov/32343789/

2356

Costantino G, Montano N, Casazza G. When should we change our clinical practice based on the results of a clinical study? The hierarchy of evidence. Intern Emerg Med. 2015;10(6):745–7. https://pubmed.ncbi.nlm.nih.gov/25860505/

2357

Mohammadi-Shemirani P, Chong M, Pigeyre M, Morton RW, Gerstein HC, Paré G. Effects of lifelong testosterone exposure on health and disease using Mendelian randomization. Elife. 2020;9:e58914. https://pubmed.ncbi.nlm.nih.gov/33063668/

2358

Zuccolo L, Holmes MV. Commentary: Mendelian randomization-inspired causal inference in the absence of genetic data. Int J Epidemiol. 2017;46(3):962–5. https://pubmed.ncbi.nlm.nih.gov/28025256/

2359

Zuccolo L, Holmes MV. Commentary: Mendelian randomization-inspired causal inference in the absence of genetic data. Int J Epidemiol. 2017;46(3):962–5. https://pubmed.ncbi.nlm.nih.gov/28025256/

2360

Goulden R. Moderate alcohol consumption is not associated with reduced all-cause mortality. Am J Med. 2016;129(2):180–6.e4. https://pubmed.ncbi.nlm.nih.gov/26524703/

2361

Zuccolo L, Holmes MV. Commentary: Mendelian randomization-inspired causal inference in the absence of genetic data. Int J Epidemiol. 2017;46(3):962–5. https://pubmed.ncbi.nlm.nih.gov/28025256/

2362

Holmes MV, Dale CE, Zuccolo L, et al. Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data. BMJ. 2014;349:g4164. https://pubmed.ncbi.nlm.nih.gov/25011450/

2363

Xi B, Veeranki SP, Zhao M, Ma C, Yan Y, Mi J. Relationship of alcohol consumption to all-cause, cardiovascular, and cancer-related mortality in U.S. adults. J Am Coll Cardiol. 2017;70(8):913–22. https://pubmed.ncbi.nlm.nih.gov/28818200/

2364

Costanzo S, de Gaetano G, Di Castelnuovo A, Djoussé L, Poli A, van Velden DP. Moderate alcohol consumption and lower total mortality risk: justified doubts or established facts? Nutr Metab Cardiovasc Dis. 2019;29(10):1003–8. https://pubmed.ncbi.nlm.nih.gov/31400826/

2365

Oppenheimer GM, Bayer R. Is moderate drinking protective against heart disease? The science, politics and history of a public health conundrum. Milbank Q. 2020;98(1):39–56. https://pubmed.ncbi.nlm.nih.gov/31803980/

2366

Skovenborg E, Grønbæk M, Ellison RC. Benefits and hazards of alcohol-the J-shaped curve and public health. DAT. 2021;21(1):54–69. https://portal.findresearcher.sdu.dk/en/publications/benefits-and-hazards-of-alcohol-the-j-shaped-curve-and-public-hea

2367

Golder S, McCambridge J. Alcohol, cardiovascular disease and industry funding: a co-authorship network analysis of systematic reviews. Soc Sci Med. 2021;289:114450. https://pubmed.ncbi.nlm.nih.gov/34607052/

2368

Costanzo S, de Gaetano G, Di Castelnuovo A, Djoussé L, Poli A, van Velden DP. Moderate alcohol consumption and lower total mortality risk: justified doubts or established facts? Nutr Metab Cardiovasc Dis. 2019;29(10):1003–8. https://pubmed.ncbi.nlm.nih.gov/31400826/

2369

Connor J. Why do alcohol’s assumed benefits have any role in policymaking? J Stud Alcohol Drugs. 2016;77(2):201–2. https://pubmed.ncbi.nlm.nih.gov/26997176/

2370

Rabin RC. Federal agency courted alcohol industry to fund study on benefits of moderate drinking. The New York Times. https://www.nytimes.com/2018/03/17/health/nih-alcohol-study-liquor-industry.html. Published March 17, 2018. Accessed October 21, 2021.; https://www.nytimes.com/2018/03/17/health/nih-alcohol-study-liquor-industry.html

2371

Rabin RC. Federal agency courted alcohol industry to fund study on benefits of moderate drinking. The New York Times. https://www.nytimes.com/2018/03/17/health/nih-alcohol-study-liquor-industry.html. Published March 17, 2018. Accessed October 21, 2021.; https://www.nytimes.com/2018/03/17/health/nih-alcohol-study-liquor-industry.html

2372

Rabin RC. Major study of drinking will be shut down. The New York Times. https://www.nytimes.com/2018/06/15/health/alcohol-nih-drinking.html. Published June 15, 2018. Accessed October 21, 2021.; https://www.nytimes.com/2018/06/15/health/alcohol-nih-drinking.html

2373

Rabin RC. Federal agency courted alcohol industry to fund study on benefits of moderate drinking. The New York Times. https://www.nytimes.com/2018/03/17/health/nih-alcohol-study-liquor-industry.html. Published March 17, 2018. Accessed October 21, 2021.; https://www.nytimes.com/2018/03/17/health/nih-alcohol-study-liquor-industry.html

2374

Braillon A, Wilson M. Does moderate alcohol consumption really have health benefits? BMJ. 2018;362:k3888. https://pubmed.ncbi.nlm.nih.gov/30224550/

2375

Oppenheimer GM, Bayer R. Is moderate drinking protective against heart disease? The science, politics and history of a public health conundrum. Milbank Q. 2020;98(1):39–56. https://pubmed.ncbi.nlm.nih.gov/31803980/

2376

Britton A. Moderate alcohol consumption and total mortality risk: do not advocate drinking for “health benefits.” Nutr Metab Cardiovasc Dis. 2019;29(10):1009–10. https://pubmed.ncbi.nlm.nih.gov/31362849/

2377

Burton R, Sheron N. No level of alcohol consumption improves health. Lancet. 2018;392(10152):987–8. https://pubmed.ncbi.nlm.nih.gov/30146328/

2378

Britton A. Moderate alcohol consumption and total mortality risk: do not advocate drinking for “health benefits.” Nutr Metab Cardiovasc Dis. 2019;29(10):1009–10. https://pubmed.ncbi.nlm.nih.gov/31362849/

2379

Manolis TA, Manolis AA, Manolis AS. Cardiovascular effects of alcohol: a double-edged sword / how to remain at the nadir point of the J-curve? Alcohol. 2019;76:117–29. https://pubmed.ncbi.nlm.nih.gov/30735906/

2380

Arora M, ElSayed A, Beger B, et al. The impact of alcohol consumption on cardiovascular health: myths and measures. Glob Heart. 2022;17(1):45. https://pubmed.ncbi.nlm.nih.gov/36051324/

2381

Griswold MG, Fullman N, Hawley C, et al. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2018;392(10152):1015–35. https://pubmed.ncbi.nlm.nih.gov/30146330/

2382

Holahan CJ, Schutte KK, Brennan PL, et al. Wine consumption and 20-year mortality among late-life moderate drinkers. J Stud Alcohol Drugs. 2012;73(1):80–8. https://pubmed.ncbi.nlm.nih.gov/24588326/

2383

Frankel EN, Kanner J, German JB, Parks E, Kinsella JE. Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet. 1993;341(8843):454–7. https://pubmed.ncbi.nlm.nih.gov/8094487/

2384

Meagher EA, Barry OP, Burke A, et al. Alcohol-induced generation of lipid peroxidation products in humans. J Clin Invest. 1999;104(6):805–13. https://pubmed.ncbi.nlm.nih.gov/10491416/

2385

Di Renzo L, Carraro A, Valente R, Iacopino L, Colica C, De Lorenzo A. Intake of red wine in different meals modulates oxidized LDL level, oxidative and inflammatory gene expression in healthy people: a randomized crossover trial. Oxid Med Cell Longev. 2014;2014:681318. https://pubmed.ncbi.nlm.nih.gov/24876915/

2386

Caccetta RAA, Burke V, Mori TA, Beilin LJ, Puddey IB, Croft KD. Red wine polyphenols, in the absence of alcohol, reduce lipid peroxidative stress in smoking subjects. Free Radic Biol Med. 2001;30(6):636–42. https://pubmed.ncbi.nlm.nih.gov/11295361/

2387

Schrieks IC, van den Berg R, Sierksma A, Beulens JWJ, Vaes WHJ, Hendriks HFJ. Effect of red wine consumption on biomarkers of oxidative stress. Alcohol Alcohol. 2013;48(2):153–9. https://pubmed.ncbi.nlm.nih.gov/22859618/

2388

Chiva-Blanch G, Urpi-Sarda M, Ros E, et al. Dealcoholized red wine decreases systolic and diastolic blood pressure and increases plasma nitric oxide: short communication. Circ Res. 2012;111(8):1065–8. https://pubmed.ncbi.nlm.nih.gov/22955728/

2389

Naissides M, Mamo JCL, James AP, Pal S. The effect of acute red wine polyphenol consumption on postprandial lipaemia in postmenopausal women. Atherosclerosis. 2004;177(2):401–8. https://pubmed.ncbi.nlm.nih.gov/15530916/

2390

Williams MJA, Sutherland WHF, Whelan AP, McCormick MP, de Jong SA. Acute effect of drinking red and white wines on circulating levels of inflammation-sensitive molecules in men with coronary artery disease. Metabolism. 2004;53(3):318–23. https://pubmed.ncbi.nlm.nih.gov/15015143/

2391

Agewall S, Wright S, Doughty RN, Whalley GA, Duxbury M, Sharpe N. Does a glass of red wine improve endothelial function? Eur Heart J. 2000;21(1):74–8. https://pubmed.ncbi.nlm.nih.gov/10610747/

2392

Hashimoto M, Kim S, Eto M, et al. Effect of acute intake of red wine on flow-mediated vasodilatation of the brachial artery. Am J Cardiol. 2001;88(12):1457–60. https://pubmed.ncbi.nlm.nih.gov/11741577/

2393

Boban M, Modun D, Music I, et al. Red wine induced modulation of vascular function: separating the role of polyphenols, ethanol, and urates. J Cardiovasc Pharmacol. 2006;47(5):695–701. https://pubmed.ncbi.nlm.nih.gov/16775510/

2394

Whelan AP, Sutherland WHF, McCormick MP, Yeoman DJ, de Jong SA, Williams MJA. Effects of white and red wine on endothelial function in subjects with coronary artery disease. Intern Med J. 2004;34(5):224–8. https://pubmed.ncbi.nlm.nih.gov/15151666/

2395

Karatzi K, Papamichael C, Aznaouridis K, et al. Constituents of red wine other than alcohol improve endothelial function in patients with coronary artery disease. Coron Artery Dis. 2004;15(8):485–90. https://pubmed.ncbi.nlm.nih.gov/15585989/

2396

Shukitt-Hale B, Carey A, Simon L, Mark DA, Joseph JA. Effects of Concord grape juice on cognitive and motor deficits in aging. Nutrition. 2006;22(3):295–302. https://pubmed.ncbi.nlm.nih.gov/16412610/

2397

Smith JM, Stouffer EM. Concord grape juice reverses the age-related impairment in latent learning in rats. Nutr Neurosci. 2014;17(2):81–7. https://pubmed.ncbi.nlm.nih.gov/23541291/

2398

Американская компания, с 1956 года принадлежит Национальной виноградной кооперативной ассоциации, кооперативу производителей винограда. – Примеч. ред.

На страницу:
60 из 80