bannerbanner
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
59 из 80

2208

Sigurdsson EL. Salt: a taste of death? Scand J Prim Health Care. 2014;32(2):53–4. https://pubmed.ncbi.nlm.nih.gov/24939739/

2209

Maleki A, Soltanian AR, Zeraati F, Sheikh V, Poorolajal J. The flavor and acceptability of six different potassium-enriched (sodium reduced) iodized salts: a single-blind, randomized, crossover design. Clin Hypertens. 2016;22(1):18. https://pubmed.ncbi.nlm.nih.gov/28031983/

2210

Whelton PK, Appel LJ, Sacco RL, et al. Sodium, blood pressure, and cardiovascular disease: further evidence supporting the American Heart Association sodium reduction recommendations. Circulation. 2012;126(24):2880–9. https://pubmed.ncbi.nlm.nih.gov/23124030/

2211

Cogswell ME, Zhang Z, Carriquiry AL, et al. Sodium and potassium intakes among US adults: NHANES 2003–2008. Am J Clin Nutr. 2012;96(3):647–57. https://pubmed.ncbi.nlm.nih.gov/22854410/

2212

Sebastian A, Cordain L, Frassetto L, Banerjee T, Morris RC. Postulating the major environmental condition resulting in the expression of essential hypertension and its associated cardiovascular diseases: dietary imprudence in daily selection of foods in respect of their potassium and sodium content resulting in oxidative stress-induced dysfunction of the vascular endothelium, vascular smooth muscle, and perivascular tissues. Med Hypotheses. 2018;119:110–9. https://pubmed.ncbi.nlm.nih.gov/30122481/

2213

Palmer BF, Clegg DJ. Achieving the benefits of a high-potassium, paleolithic diet, without the toxicity. Mayo Clin Proc. 2016;91(4):496–508. https://pubmed.ncbi.nlm.nih.gov/26948054/

2214

Jew S, AbuMweis SS, Jones PJH. Evolution of the human diet: linking our ancestral diet to modern functional foods as a means of chronic disease prevention. J Med Food. 2009;12(5):925–34. https://pubmed.ncbi.nlm.nih.gov/19857053/

2215

Drewnowski A, Maillot M, Rehm C. Reducing the sodium-potassium ratio in the US diet: a challenge for public health. Am J Clin Nutr. 2012;96(2):439–44. https://pubmed.ncbi.nlm.nih.gov/22760562/

2216

van Buren L, Dötsch-Klerk M, Seewi G, Newson RS. Dietary impact of adding potassium chloride to foods as a sodium reduction technique. Nutrients. 2016;8(4):235. https://pubmed.ncbi.nlm.nih.gov/27110818/

2217

Jafarnejad S, Mirzaei H, Clark CCT, Taghizadeh M, Ebrahimzadeh A. The hypotensive effect of salt substitutes in stage 2 hypertension: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2020;20(1):98. https://pubmed.ncbi.nlm.nih.gov/32106813/

2218

Chang HY, Hu YW, Yue CSJ, et al. Effect of potassium-enriched salt on cardiovascular mortality and medical expenses of elderly men. Am J Clin Nutr. 2006;83(6):1289–96. https://pubmed.ncbi.nlm.nih.gov/16762939/

2219

Lambert K, Conley M, Dumont R, et al. Letter to the editor on “Potential use of salt substitutes to reduce blood pressure.” J Clin Hypertens. 2019;21(10):1609–10. https://pubmed.ncbi.nlm.nih.gov/31448881/

2220

Farrand C, MacGregor G, Campbell NRC, Webster J. Potential use of salt substitutes to reduce blood pressure. J Clin Hypertens. 2019;21(3):350–4. https://pubmed.ncbi.nlm.nih.gov/30690859/

2221

Greer RC, Marklund M, Anderson CAM, et al. Potassium-enriched salt substitutes as a means to lower blood pressure: benefits and risks. Hypertension. 2020;75(2):266–74. https://pubmed.ncbi.nlm.nih.gov/31838902/

2222

Greer RC, Marklund M, Anderson CAM, et al. Potassium-enriched salt substitutes as a means to lower blood pressure: benefits and risks. Hypertension. 2020;75(2):266–74. https://pubmed.ncbi.nlm.nih.gov/31838902/

2223

Greer RC, Marklund M, Anderson CAM, et al. Potassium-enriched salt substitutes as a means to lower blood pressure: benefits and risks. Hypertension. 2020;75(2):266–74. https://pubmed.ncbi.nlm.nih.gov/31838902/

2224

Mokdad AH, Ballestros K, Echko M, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72. https://pubmed.ncbi.nlm.nih.gov/29634829/

2225

Mokdad AH, Ballestros K, Echko M, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72. https://pubmed.ncbi.nlm.nih.gov/29634829/

2226

Reedy J, Krebs-Smith SM, Miller PE, et al. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J Nutr. 2014;144(6):881–9. https://pubmed.ncbi.nlm.nih.gov/24572039/

2227

Devries S, Willett W, Bonow RO. Nutrition education in medical school, residency training, and practice. JAMA. 2019;321(14):1351–2. https://pubmed.ncbi.nlm.nih.gov/30896728/

2228

Freeman KJ, Grega ML, Friedman SM, et al. Lifestyle medicine reimbursement: a proposal for policy priorities informed by a cross-sectional survey of lifestyle medicine practitioners. Int J Environ Res Public Health. 2021;18(21):11632. https://pubmed.ncbi.nlm.nih.gov/34770148/

2229

Brody H. Pharmaceutical industry financial support for medical education: benefit, or undue influence? J Law Med Ethics. 2009;37(3):451–60. https://pubmed.ncbi.nlm.nih.gov/19723256/

2230

Proctor RN. The history of the discovery of the cigarette – lung cancer link: evidentiary traditions, corporate denial, global toll. Tob Control. 2012;21(2):87–91. https://pubmed.ncbi.nlm.nih.gov/22345227/

2231

Office on Smoking and Health, National Center for Chronic Disease Prevention and Health Promotion, CDC. Tobacco use – United States, 1900–1999. JAMA. 1999;282(23):2202–4. https://pubmed.ncbi.nlm.nih.gov/10605963/

2232

Editorial. The advertising of cigarettes. JAMA. 1948;138(9):652–3. https://jamanetwork.com/journals/jama/article-abstract/302011

2233

Editorial. The advertising of cigarettes. JAMA. 1948;138(9):652–3. https://jamanetwork.com/journals/jama/article-abstract/302011

2234

Proctor RN. The history of the discovery of the cigarette – lung cancer link: evidentiary traditions, corporate denial, global toll. Tob Control. 2012;21(2):87–91. https://pubmed.ncbi.nlm.nih.gov/22345227/

2235

Gugiu PC, Gugiu MR. Levels of evidence: a reply to Berger and Knoll. Eval Health Prof. 2011;34(1):127–30. https://journals.sagepub.com/doi/10.1177/0163278710391467

2236

Chopra M, Darnton-Hill I. Tobacco and obesity epidemics: not so different after all? BMJ. 2004;328(7455):1558–60. https://pubmed.ncbi.nlm.nih.gov/15217877/

2237

Industries. OpenSecrets.org. https://www.opensecrets.org/federal-lobbying/industries. Published July 23, 2021. Accessed August 31, 2021.; https://www.opensecrets.org/federal-lobbying/industries

2238

Maplight, Feed the Truth. Draining the Big Food swamp. FeedtheTruth.org. https://feedthetruth.org/wp-content/uploads/2021/08/FTT-DrainingTheSwamp-ExecSummary-FINAL.pdf. Published February 25, 2021. Accessed January 6, 2022.; https://www.readkong.com/page/draining-the-big-food-feed-the-truth-5969302

2239

Ищи, кому выгодно (лат.). – Примеч. ред.

2240

Sarna L, Bialous SA, Nandy K, Antonio ALM, Yang Q. Changes in smoking prevalences among health care professionals from 2003 to 2010–2011. JAMA. 2014;311(2):197–9. https://pubmed.ncbi.nlm.nih.gov/24399560/

2241

Jindeel A. Health care providers who smoke. Am J Nurs. 2010;110(6):11. https://pubmed.ncbi.nlm.nih.gov/20505442/

2242

Aggarwal M, Singh Ospina N, Kazory A, et al. The mismatch of nutrition and lifestyle beliefs and actions among physicians: a wake-up call. Am J Lifestyle Med. 2020;14(3):304–15. https://pubmed.ncbi.nlm.nih.gov/32477033/

2243

Bertozzi B, Tosti V, Fontana L. Beyond calories: an integrated approach to promote health, longevity and well-being. Gerontology. 2017;63(1):13–9. https://pubmed.ncbi.nlm.nih.gov/27173125/

2244

Fadnes LT, Økland JM, Haaland ØA, Johansson KA. Estimating impact of food choices on life expectancy: a modeling study. PLoS Med. 2022;19(2):e1003889. https://pubmed.ncbi.nlm.nih.gov/35134067/

2245

Hooper L, Bunn D, Jimoh FO, Fairweather-Tait SJ. Water-loss dehydration and aging. Mech Ageing Dev. 2014;136–7:50–8. https://pubmed.ncbi.nlm.nih.gov/24333321/

2246

Kenney WL, Chiu P. Influence of age on thirst and fluid intake. Med Sci Sports Exerc. 2001;33(9):1524–32. https://pubmed.ncbi.nlm.nih.gov/11528342/

2247

Lorenzo I, Serra-Prat M, Yébenes JC. The role of water homeostasis in muscle function and frailty: a review. Nutrients. 2019;11(8):E1857. https://pubmed.ncbi.nlm.nih.gov/31405072/

2248

Hooper L, Bunn D, Jimoh FO, Fairweather-Tait SJ. Water-loss dehydration and aging. Mech Ageing Dev. 2014;136–7:50–8. https://pubmed.ncbi.nlm.nih.gov/24333321/

2249

Popkin BM, Armstrong LE, Bray GM, Caballero B, Frei B, Willett WC. A new proposed guidance system for beverage consumption in the United States. Am J Clin Nutr. 2006;83(3):529–42. https://pubmed.ncbi.nlm.nih.gov/16522898/

2250

Walsh NP, Fortes MB, Purslow C, Esmaeelpour M. Author response: is whole body hydration an important consideration in dry eye? Invest Ophthalmol Vis Sci. 2013;54(3):1713–4. https://pubmed.ncbi.nlm.nih.gov/23471906/

2251

Chan J, Knutsen SF, Blix GG, Lee JW, Fraser GE. Water, other fluids, and fatal coronary heart disease: the Adventist Health Study. Am J Epidemiol. 2002;155(9):827–33. https://pubmed.ncbi.nlm.nih.gov/11978586/

2252

Cui R, Iso H, Eshak ES, Maruyama K, Tamakoshi A, JACC Study Group. Water intake from foods and beverages and risk of mortality from CVD: the Japan Collaborative Cohort (JACC) Study. Public Health Nutr. 2018;21(16):3011–7. https://pubmed.ncbi.nlm.nih.gov/30107863/

2253

Stookey JD, Kavouras S¿, Suh H, Lang F. Underhydration is associated with obesity, chronic diseases, and death within 3 to 6 years in the U.S. population aged 51–70 years. Nutrients. 2020;12(4):E905. https://pubmed.ncbi.nlm.nih.gov/32224908/

2254

Lim WH, Wong G, Lewis JR, et al. Total volume and composition of fluid intake and mortality in older women: a cohort study. BMJ Open. 2017;7(3):e011720. https://pubmed.ncbi.nlm.nih.gov/28341683/

2255

Kant AK, Graubard BI. A prospective study of water intake and subsequent risk of all-cause mortality in a national cohort. Am J Clin Nutr. 2017;105(1):212–20. https://pubmed.ncbi.nlm.nih.gov/27903521/

2256

Leurs LJ, Schouten LJ, Goldbohm RA, van den Brandt PA. Total fluid and specific beverage intake and mortality due to IHD and stroke in the Netherlands Cohort Study. Br J Nutr. 2010;104(8):1212–21. https://pubmed.ncbi.nlm.nih.gov/20456812/

2257

Loomba RS, Aggarwal S, Arora RR. Raw water consumption does not affect all-cause or cardiovascular mortality: a secondary analysis. Am J Ther. 2016;23(6):e1287–92. https://pubmed.ncbi.nlm.nih.gov/25611360/

2258

Hooper L, Bunn D, Jimoh FO, Fairweather-Tait SJ. Water-loss dehydration and aging. Mech Ageing Dev. 2014;136–7:50–8. https://pubmed.ncbi.nlm.nih.gov/24333321/

2259

Masot O, Miranda J, Santamaría AL, Paraiso Pueyo E, Pascual A, Botigué T. Fluid intake recommendation considering the physiological adaptations of adults over 65 years: a critical review. Nutrients. 2020;12(11):E3383. https://pubmed.ncbi.nlm.nih.gov/33158071/

2260

McKenzie AL, Muñoz CX, Armstrong LE. Accuracy of urine color to detect equal to or greater than 2 % body mass loss in men. J Athl Train. 2015;50(12):1306–9. https://pubmed.ncbi.nlm.nih.gov/26642041/

2261

McKenzie AL, Armstrong LE. Monitoring body water balance in pregnant and nursing women: the validity of urine color. Ann Nutr Metab. 2017;70 Suppl 1:18–22. https://pubmed.ncbi.nlm.nih.gov/28614809/

2262

Perrier ET, Johnson EC, McKenzie AL, Ellis LA, Armstrong LE. Urine colour change as an indicator of change in daily water intake: a quantitative analysis. Eur J Nutr. 2016;55(5):1943–9. https://pubmed.ncbi.nlm.nih.gov/26286348/

2263

Kostelnik SB, Davy KP, Hedrick VE, Thomas DT, Davy BM. The validity of urine color as a hydration biomarker within the general adult population and athletes: a systematic review. J Am Coll Nutr. 2021;40(2):172–9. https://pubmed.ncbi.nlm.nih.gov/32330109/

2264

Hooper L, Abdelhamid A, Attreed NJ, et al. Clinical symptoms, signs and tests for identification of impending and current water-loss dehydration in older people. Cochrane Database Syst Rev. 2015;(4):CD009647. https://pubmed.ncbi.nlm.nih.gov/25924806/

2265

Benelam B, Wyness L. Hydration and health: a review. Nutr Bull. 2010;35:3–25. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1467–3010.2009.01795.x

2266

Vivanti AP. Origins for the estimations of water requirements in adults. Eur J Clin Nutr. 2012;66(12):1282–9. https://pubmed.ncbi.nlm.nih.gov/23093341/

2267

Benelam B, Wyness L. Hydration and health: a review. Nutr Bull. 2010;35:3–25. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1467–3010.2009.01795.x

2268

Masot O, Miranda J, Santamaría AL, Paraiso Pueyo E, Pascual A, Botigué T. Fluid intake recommendation considering the physiological adaptations of adults over 65 years: a critical review. Nutrients. 2020;12(11):E3383. https://pubmed.ncbi.nlm.nih.gov/33158071/

2269

Hoffman MD, Bross TL, Hamilton RT. Are we being drowned by overhydration advice on the Internet? Phys Sportsmed. 2016;44(4):343–8. https://pubmed.ncbi.nlm.nih.gov/27548748/

2270

Onufrak SJ, Park S, Sharkey JR, Sherry B. The relationship of perceptions of tap water safety with intake of sugar-sweetened beverages and plain water among US adults. Public Health Nutr. 2014;17(1):179–85. https://pubmed.ncbi.nlm.nih.gov/23098620/

2271

Saleh MA, Abdel-Rahman FH, Woodard BB, et al. Chemical, microbial and physical evaluation of commercial bottled waters in greater Houston area of Texas. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2008;43(4):335–47. https://pubmed.ncbi.nlm.nih.gov/18273738/

2272

Fardet A, Boirie Y. Associations between food and beverage groups and major diet-related chronic diseases: an exhaustive review of pooled/meta-analyses and systematic reviews. Nutr Rev. 2014;72(12):741–62. https://pubmed.ncbi.nlm.nih.gov/25406801/

2273

. Øverby NC, Lillegaard ITL, Johansson L, Andersen LF. High intake of added sugar among Norwegian children and adolescents. Public Health Nutr. 2004;7(2):285–93. https://pubmed.ncbi.nlm.nih.gov/15003136/

2274

Chikritzhs T, Stockwell T, Naimi T, Andreasson S, Dangardt F, Liang W. Has the leaning tower of presumed health benefits from ‘moderate’ alcohol use finally collapsed? Addiction. 2015;110(5):726–7. https://pubmed.ncbi.nlm.nih.gov/25613200/

2275

Fillmore KM, Stockwell T, Chikritzhs T, Bostrom A, Kerr W. Moderate alcohol use and reduced mortality risk: systematic error in prospective studies and new hypotheses. Ann Epidemiol. 2007;17(5 Suppl):S16–23. https://pubmed.ncbi.nlm.nih.gov/17478320/

2276

Johnson T, Gerson L, Hershcovici T, Stave C, Fass R. Systematic review: the effects of carbonated beverages on gastro-oesophageal reflux disease. Aliment Pharmacol Ther. 2010;31(6):607–14. https://pubmed.ncbi.nlm.nih.gov/20055784/

2277

Lesser LI, Ebbeling CB, Goozner M, Wypij D, Ludwig DS. Relationship between funding source and conclusion among nutrition-related scientific articles. PLoS Med. 2007;4(1):e5. https://pubmed.ncbi.nlm.nih.gov/17214504/

2278

Quik M. Smoking, nicotine and Parkinson’s disease. Trends Neurosci. 2004;27(9):561–8. https://pubmed.ncbi.nlm.nih.gov/15331239/

2279

Searles Nielsen S, Gallagher LG, Lundin JI, et al. Environmental tobacco smoke and Parkinson’s disease. Mov Disord. 2012;27(2):293–6. https://pubmed.ncbi.nlm.nih.gov/22095755/

2280

U.S. Department of Health and Human Services. The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General. Centers for Disease Control and Prevention; 2014. https://www.cdc.gov/tobacco/sgr/50th-anniversary/index.htm#complete-report

2281

Nielsen SS, Franklin GM, Longstreth WT, Swanson PD, Checkoway H. Nicotine from edible Solanaceae and risk of Parkinson disease. Ann Neurol. 2013;74(3):472–7. https://pubmed.ncbi.nlm.nih.gov/23661325/

2282

Aune D, Rosenblatt DAN, Chan DSM, et al. Dairy products, calcium, and prostate cancer risk: a systematic review and meta-analysis of cohort studies. Am J Clin Nutr. 2015;101(1):87–117. https://pubmed.ncbi.nlm.nih.gov/25527754/

2283

Vasconcelos A, Santos T, Ravasco P, Neves PM. Dairy products: is there an impact on promotion of prostate cancer? A review of the literature. Front Nutr. 2019;6:62. https://pubmed.ncbi.nlm.nih.gov/31139629/

2284

Aune D, Lau R, Chan DSM, et al. Dairy products and colorectal cancer risk: a systematic review and meta-analysis of cohort studies. Ann Oncol. 2012;23(1):37–45. https://pubmed.ncbi.nlm.nih.gov/21617020/

2285

Veettil SK, Ching SM, Lim KG, Saokaew S, Phisalprapa P, Chaiyakunapruk N. Effects of calcium on the incidence of recurrent colorectal adenomas: a systematic review with meta-analysis and trial sequential analysis of randomized controlled trials. Medicine. 2017;96(32):e7661. https://pubmed.ncbi.nlm.nih.gov/28796047/

2286

Gonzales JF, Barnard ND, Jenkins DJA, et al. Applying the precautionary principle to nutrition and cancer. J Am Coll Nutr. 2014;33(3):239–46. https://pubmed.ncbi.nlm.nih.gov/24870117/

2287

Bridges, M. Moo-ove over, cow’s milk: the rise of plant-based dairy alternatives. Pract Gastroenterol. 2018;42(1):20–7. https://practicalgastro.com/2019/07/29/moo-ove-over-cows-milk-the-rise-of-plant-based-dairy-alternatives/

2288

Boland, MA. Milk processors are going bankrupt as Americans ditch dairy. Bloomberg. https://www.bloomberg.com/news/articles/2020–01–10/distaste-for-dairy-sends-milk-processors-to-bankruptcy-court. Published January 10, 2020. Accessed January 6, 2022.; https://www.bloomberg.com/news/articles/2020-01-10/distaste-for-dairy-sends-milk-processors-to-bankruptcy-court?leadSource=uverify%20wall

2289

Silva ARA, Silva MMN, Ribeiro BD. Health issues and technological aspects of plant-based alternative milk. Food Res Int. 2020;131:108972. https://pubmed.ncbi.nlm.nih.gov/32247441/

2290

Jacobs ET, Foote JA, Kohler LN, Skiba MB, Thomson CA. Re-examination of dairy as a single commodity in US dietary guidance. Nutr Rev. 2020;78(3):225–34. https://pubmed.ncbi.nlm.nih.gov/31904838/

2291

Vanga SK, Raghavan V. How well do plant based alternatives fare nutritionally compared to cow’s milk? J Food Sci Technol. 2018;55(1):10–20. https://pubmed.ncbi.nlm.nih.gov/29358791/

2292

Непереносимость лактозы. – Примеч. ред.

2293

Storhaug CL, Fosse SK, Fadnes LT. Country, regional, and global estimates for lactose malabsorption in adults: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2017;2(10):738–46. https://pubmed.ncbi.nlm.nih.gov/28690131/

2294

National Institute of Child Health and Human Development. Lactose intolerance: information for health care providers. U.S. Dept. of Health and Human Services, National Institutes of Health. http://purl.access.gpo.gov/GPO/LPS80173. Published January 2006. Accessed January 6, 2022.; https://purl.access.gpo.gov/GPO/LPS80173

2295

Bertron P, Barnard ND, Mills M. Racial bias in federal nutrition policy, part I: the public health implications of variations in lactase persistence. J Natl Med Assoc. 1999;91(3):151–7. https://pubmed.ncbi.nlm.nih.gov/10203917/

2296

Jacobs ET, Foote JA, Kohler LN, Skiba MB, Thomson CA. Re-examination of dairy as a single commodity in US dietary guidance. Nutr Rev. 2020;78(3):225–34. https://pubmed.ncbi.nlm.nih.gov/31904838/

2297

Jacobs ET, Foote JA, Kohler LN, Skiba MB, Thomson CA. Re-examination of dairy as a single commodity in US dietary guidance. Nutr Rev. 2020;78(3):225–34. https://pubmed.ncbi.nlm.nih.gov/31904838/

2298

Godlee F, Malone R, Timmis A, et al. Journal policy on research funded by the tobacco industry. Thorax. 2013;68(12):1090–1. https://pubmed.ncbi.nlm.nih.gov/24130154/

2299

Yi M, Wu X, Zhuang W, et al. Tea consumption and health outcomes: umbrella review of meta-analyses of observational studies in humans. Mol Nutr Food Res. 2019;63(16):e1900389. https://pubmed.ncbi.nlm.nih.gov/31216091/

2300

Zhang L, Jie G, Zhang J, Zhao B. Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress. Free Radic Biol Med. 2009;46(3):414–21. https://pubmed.ncbi.nlm.nih.gov/19061950/

2301

Niu Y, Na L, Feng R, et al. The phytochemical, EGCG, extends lifespan by reducing liver and kidney function damage and improving age-associated inflammation and oxidative stress in healthy rats. Aging Cell. 2013;12(6):1041–9. https://pubmed.ncbi.nlm.nih.gov/23834676/

2302

Yi M, Wu X, Zhuang W, et al. Tea consumption and health outcomes: umbrella review of meta-analyses of observational studies in humans. Mol Nutr Food Res. 2019;63(16):e1900389. https://pubmed.ncbi.nlm.nih.gov/31216091/

2303

Spiegelhalter D. Using speed of ageing and “microlives” to communicate the effects of lifetime habits and environment. BMJ. 2012;345:e8223. https://pubmed.ncbi.nlm.nih.gov/23247978/

2304

Yi M, Wu X, Zhuang W, et al. Tea consumption and health outcomes: umbrella review of meta-analyses of observational studies in humans. Mol Nutr Food Res. 2019;63(16):e1900389. https://pubmed.ncbi.nlm.nih.gov/31216091/

2305

Jochmann N, Lorenz M, von Krosigk A, et al. The efficacy of black tea in ameliorating endothelial function is equivalent to that of green tea. Br J Nutr. 2008;99(4):863–8. https://pubmed.ncbi.nlm.nih.gov/17916273/

На страницу:
59 из 80