bannerbanner
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
58 из 80

2112

Shammas MA. Telomeres, lifestyle, cancer, and aging. Curr Opin Clin Nutr Metab Care. 2011;14(1):28–34. https://pubmed.ncbi.nlm.nih.gov/21102320/

2113

Prieto-Oliveira P. Telomerase activation in the treatment of aging or degenerative diseases: a systematic review. Mol Cell Biochem. 2021;476(2):599–607. https://pubmed.ncbi.nlm.nih.gov/33001374/

2114

Artandi SE, Depinho RA. Telomeres and telomerase in cancer. Carcinogenesis. 2010;31(1):9–18. https://pubmed.ncbi.nlm.nih.gov/19887512/

2115

Ornish D, Weidner G, Fair WR, et al. Intensive lifestyle changes may affect the progression of prostate cancer. J Urol. 2005;174(3):1065–70. https://pubmed.ncbi.nlm.nih.gov/16094059/

2116

Skordalakes E. Telomerase and the benefits of healthy living. Lancet Oncol. 2008;9(11):1023–4. https://pubmed.ncbi.nlm.nih.gov/19012852/

2117

Huzen J, Wong LS, van Veldhuisen DJ, et al. Telomere length loss due to smoking and metabolic traits. J Intern Med. 2014;275(2):155–63. https://pubmed.ncbi.nlm.nih.gov/24118582/

2118

García-Calzón S, Moleres A, Martínez-González MA, et al. Dietary total antioxidant capacity is associated with leukocyte telomere length in a children and adolescent population. Clin Nutr. 2015;34(4):694–9. https://pubmed.ncbi.nlm.nih.gov/25131600/

2119

Leung CW, Laraia BA, Needham BL, et al. Soda and cell aging: associations between sugar-sweetened beverage consumption and leukocyte telomere length in healthy adults from the National Health and Nutrition Examination Surveys. Am J Public Health. 2014;104(12):2425–31. https://pubmed.ncbi.nlm.nih.gov/25322305/

2120

Nettleton JA, Diez-Roux A, Jenny NS, Fitzpatrick AL, Jacobs DR. Dietary patterns, food groups, and telomere length in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2008;88(5):1405–12. https://pubmed.ncbi.nlm.nih.gov/18996878/

2121

Gu Y, Honig LS, Schupf N, et al. Mediterranean diet and leukocyte telomere length in a multi-ethnic elderly population. Age (Dordr). 2015;37(2):9758. https://pubmed.ncbi.nlm.nih.gov/25750063/

2122

Hou L, Savage SA, Blaser MJ, et al. Telomere length in peripheral leukocyte DNA and gastric cancer risk. Cancer Epidemiol Biomarkers Prev. 2009;18(11):3103–9. https://pubmed.ncbi.nlm.nih.gov/19861514/

2123

Gu Y, Honig LS, Schupf N, et al. Mediterranean diet and leukocyte telomere length in a multi-ethnic elderly population. Age (Dordr). 2015;37(2):9758. https://pubmed.ncbi.nlm.nih.gov/25750063/

2124

García-Calzón S, Moleres A, Martínez-González MA, et al. Dietary total antioxidant capacity is associated with leukocyte telomere length in a children and adolescent population. Clin Nutr. 2015;34(4):694–9. https://pubmed.ncbi.nlm.nih.gov/25131600/

2125

Zainabadi K. A brief history of modern aging research. Exp Gerontol. 2018;104:35–42. https://pubmed.ncbi.nlm.nih.gov/29355705/

2126

Zainabadi K. A brief history of modern aging research. Exp Gerontol. 2018;104:35–42. https://pubmed.ncbi.nlm.nih.gov/29355705/

2127

Strong R, Miller RA, Antebi A, et al. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an a-glucosidase inhibitor or a Nrf2-inducer. Aging Cell. 2016;15(5):872–84. https://pubmed.ncbi.nlm.nih.gov/27312235/

2128

Gebreslassie M, Sampaio F, Nystrand C, Ssegonja R, Feldman I. Economic evaluations of public health interventions for physical activity and healthy diet: a systematic review. Prev Med. 2020;136:106100. https://pubmed.ncbi.nlm.nih.gov/32353572/

2129

Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–128. https://pubmed.ncbi.nlm.nih.gov/23245604/

2130

Mokdad AH, Ballestros K, Echko M, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72. https://pubmed.ncbi.nlm.nih.gov/29634829/

2131

Afshin A, Sur PJ, Fay KA, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958–72. https://pubmed.ncbi.nlm.nih.gov/30954305/

2132

Gebreslassie M, Sampaio F, Nystrand C, Ssegonja R, Feldman I. Economic evaluations of public health interventions for physical activity and healthy diet: a systematic review. Prev Med. 2020;136:106100. https://pubmed.ncbi.nlm.nih.gov/32353572/

2133

Das P, Samarasekera U. The story of GBD 2010: a “super-human” effort. Lancet. 2012;380(9859):2067–70. https://pubmed.ncbi.nlm.nih.gov/23259158/

2134

Mokdad AH, Ballestros K, Echko M, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72. https://pubmed.ncbi.nlm.nih.gov/29634829/

2135

Dato S, Bellizzi D, Rose G, Passarino G. The impact of nutrients on the aging rate: a complex interaction of demographic, environmental and genetic factors. Mech Ageing Dev. 2016;154:49–61. https://pubmed.ncbi.nlm.nih.gov/26876763/

2136

Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E. From discoveries in ageing research to therapeutics for healthy ageing. Nature. 2019;571(7764):183–92. https://pubmed.ncbi.nlm.nih.gov/31292558/

2137

Govindaraju T, Sahle BW, McCaffrey TA, McNeil JJ, Owen AJ. Dietary patterns and quality of life in older adults: a systematic review. Nutrients. 2018;10(8):971. https://pubmed.ncbi.nlm.nih.gov/30050006/

2138

Milte CM, McNaughton SA. Dietary patterns and successful ageing: a systematic review. Eur J Nutr. 2016;55(2):423–50. https://pubmed.ncbi.nlm.nih.gov/26695408/

2139

Reedy J, Krebs-Smith SM, Miller PE, et al. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J Nutr. 2014;144(6):881–9. https://pubmed.ncbi.nlm.nih.gov/24572039/

2140

McCullough ML. Diet patterns and mortality: common threads and consistent results. J Nutr. 2014;144(6):795–6. https://pubmed.ncbi.nlm.nih.gov/24717365/

2141

Reedy J, Krebs-Smith SM, Miller PE, et al. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J Nutr. 2014;144(6):881–9. https://pubmed.ncbi.nlm.nih.gov/24572039/

2142

Afshin A, Sur PJ, Fay KA, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958–72. https://pubmed.ncbi.nlm.nih.gov/30954305/

2143

Yip CSC, Chan W, Fielding R. The associations of fruit and vegetable intakes with burden of diseases: a systematic review of meta-analyses. J Acad Nutr Diet. 2019;119(3):464–81. https://pubmed.ncbi.nlm.nih.gov/30639206/

2144

Fisher D. Study finds no link between secondhand smoke and cancer. Forbes. https://www.forbes.com/sites/danielfisher/2013/12/12/study-finds-no-link-between-secondhand-smoke-and-cancer/?sh=77c79a2565d4. Published December 12, 2013. Accessed December 12, 2021.; https://www.forbes.com/sites/danielfisher/2013/12/12/study-finds-no-link-between-secondhand-smoke-and-cancer/?sh=77c79a2565d4

2145

Hackshaw AK, Law MR, Wald NJ. The accumulated evidence on lung cancer and environmental tobacco smoke. BMJ. 1997;315(7114):980–8. https://pubmed.ncbi.nlm.nih.gov/9365295/

2146

Gori GB, Mantel N. Mainstream and environmental tobacco smoke. Regul Toxicol Pharmacol. 1991;14(1):88–105. https://pubmed.ncbi.nlm.nih.gov/1947248/

2147

Barnes DE, Bero LA. Why review articles on the health effects of passive smoking reach different conclusions. JAMA. 1998;279(19):1566–70. https://pubmed.ncbi.nlm.nih.gov/9605902/

2148

Drope J, Chapman S. Tobacco industry efforts at discrediting scientific knowledge of environmental tobacco smoke: a review of internal industry documents. J Epidemiol Community Health. 2001;55(8):588–94. https://pubmed.ncbi.nlm.nih.gov/11449018/

2149

Barnes DE, Bero LA. Why review articles on the health effects of passive smoking reach different conclusions. JAMA. 1998;279(19):1566–70. https://pubmed.ncbi.nlm.nih.gov/9605902/

2150

Fardet A, Boirie Y. Associations between food and beverage groups and major diet-related chronic diseases: an exhaustive review of pooled/meta-analyses and systematic reviews. Nutr Rev. 2014;72(12):741–62. https://pubmed.ncbi.nlm.nih.gov/25406801/

2151

Fardet A, Boirie Y. Associations between food and beverage groups and major diet-related chronic diseases: an exhaustive review of pooled/meta-analyses and systematic reviews. Nutr Rev. 2014;72(12):741–62. https://pubmed.ncbi.nlm.nih.gov/25406801/

2152

Abdelhamid AS, Brown TJ, Brainard JS, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;7:CD003177. https://pubmed.ncbi.nlm.nih.gov/30019766/

2153

Gonzales JF, Barnard ND, Jenkins DJA, et al. Applying the precautionary principle to nutrition and cancer. J Am Coll Nutr. 2014;33(3):239–46. https://pubmed.ncbi.nlm.nih.gov/24870117/

2154

Lane KE, Wilson M, Hellon TG, Davies IG. Bioavailability and conversion of plant based sources of omega-3 fatty acids – a scoping review to update supplementation options for vegetarians and vegans. Crit Rev Food Sci Nutr. 2022;62(18):4982–97. https://pubmed.ncbi.nlm.nih.gov/33576691/

2155

Fardet A, Boirie Y. Associations between food and beverage groups and major diet-related chronic diseases: an exhaustive review of pooled/meta-analyses and systematic reviews. Nutr Rev. 2014;72(12):741–62. https://pubmed.ncbi.nlm.nih.gov/25406801/

2156

Yip CSC, Lam W, Fielding R. A summary of meat intakes and health burdens. Eur J Clin Nutr. 2018;72(1):18–29. https://pubmed.ncbi.nlm.nih.gov/28792013/

2157

Spiegelhalter D. Microlives. Understanding Uncertainty. http://understandinguncertainty.org/microlives. Published November 22, 2011. Accessed August 30, 2021.; https://understandinguncertainty.org/microlives

2158

Spiegelhalter D. Using speed of ageing and “microlives” to communicate the effects of lifetime habits and environment. BMJ. 2012;345:e8223. https://pubmed.ncbi.nlm.nih.gov/23247978/

2159

Spiegelhalter D. Using speed of ageing and “microlives” to communicate the effects of lifetime habits and environment. BMJ. 2012;345:e8223. https://pubmed.ncbi.nlm.nih.gov/23247978/

2160

Zhuang P, Wu F, Mao L, et al. Egg and cholesterol consumption and mortality from cardiovascular and different causes in the United States: a population-based cohort study. PLoS Med. 2021;18(2):e1003508. https://pubmed.ncbi.nlm.nih.gov/33561122/

2161

Zeraatkar D, Han MA, Guyatt GH, et al. Red and processed meat consumption and risk for all-cause mortality and cardiometabolic outcomes: a systematic review and meta-analysis of cohort studies. Ann Intern Med. 2019;171(10):703–10. https://pubmed.ncbi.nlm.nih.gov/31569213/

2162

Heard CL, Rakow T, Spiegelhalter D. Comparing comprehension and perception for alternative speed-of-ageing and standard hazard ratio formats. Appl Cognit Psychol. 2018;32(1):81–93. https://onlinelibrary.wiley.com/doi/abs/10.1002/acp.3381

2163

Heard CL, Rakow T, Spiegelhalter D. Comparing comprehension and perception for alternative speed-of-ageing and standard hazard ratio formats. Appl Cognit Psychol. 2018;32(1):81–93. https://onlinelibrary.wiley.com/doi/abs/10.1002/acp.3381

2164

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; Volume 114: Red Meat and Processed Meat. IARC Press; 2018. https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono114.pdf. Accessed December 19 https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono114.pdf

2165

Chaffetz J. Letter on behalf of the U.S. House of Representatives Committee on Oversight and Government Reform of the 114th Congress to Francis S. Collins, M.D., Ph.D., Director, National Institutes of Health. September 26, 2016.; https://oversight.house.gov/wp-content/uploads/2016/09/2016-09-26-JEC-to-Collins-NIH-IARC-Funding-due-10-10.pdf

2166

Boobis AR, Cohen SM, Dellarco VL, et al. Classification schemes for carcinogenicity based on hazard-identification have become outmoded and serve neither science nor society. Regul Toxicol Pharmacol. 2016;82:158–66. https://pubmed.ncbi.nlm.nih.gov/27780763/

2167

Wild CP. Letter to Dr. Francis S. Collins re: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. October 5, 2016. https://monographs.iarc.who.int/ENG/News/LetterFromDrWild-to-DrCollins.pdf. Accessed December 19, 2021.; https://monographs.iarc.who.int/wp-content/uploads/2018/06/LetterFromDrWild-to-DrCollins.pdf

2168

International Agency for Research on Cancer. World Health Organization. Q&A on the carcinogenicity of the consumption of red meat and processed meat. 2015. https://www.iarc.who.int/wp-content/uploads/2018/11/Monographs-QA_Vol114.pdf. Accessed December 28, 2022.; https://www.iarc.who.int/wp-content/uploads/2018/11/Monographs-QA_Vol114.pdf

2169

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; Volume 114: Red Meat and Processed Meat. IARC Press; 2018. https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono114.pdf. Accessed December 19 https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono114.pdf

2170

Office on Smoking and Health (US). The Health Consequences of Involuntary Exposure to Tobacco Smoke: A Report of the Surgeon General. Centers for Disease Control and Prevention (US); 2006. https://pubmed.ncbi.nlm.nih.gov/20669524/

2171

Modica C, Lewis JH, Bay C. Colorectal cancer: applying the value transformation framework to increase the percent of patients receiving screening in federally qualified health centers. Prev Med Rep. 2019;15:100894. https://pubmed.ncbi.nlm.nih.gov/31198660/

2172

Kim H, Caulfield LE, Rebholz CM. Healthy plant-based diets are associated with lower risk of all-cause mortality in US adults. J Nutr. 2018;148(4):624–31. https://pubmed.ncbi.nlm.nih.gov/29659968/

2173

Bamia C, Trichopoulos D, Ferrari P, et al. Dietary patterns and survival of older Europeans: the EPIC – Elderly Study (European Prospective Investigation into Cancer and Nutrition). Public Health Nutr. 2007;10(6):590–8. https://pubmed.ncbi.nlm.nih.gov/17381929/

2174

Kahleova H, Levin S, Barnard ND. Plant-based diets for healthy aging. J Am Coll Nutr. 2021;40(5):478–9. https://pubmed.ncbi.nlm.nih.gov/32643581/

2175

Ekmekcioglu C. Nutrition and longevity – from mechanisms to uncertainties. Crit Rev Food Sci Nutr. 2020;60(18):3063–82. https://pubmed.ncbi.nlm.nih.gov/31631676/

2176

Everitt AV, Hilmer SN, Brand-Miller JC, et al. Dietary approaches that delay age-related diseases. Clin Interv Aging. 2006;1(1):11–31. https://pubmed.ncbi.nlm.nih.gov/18047254/

2177

Kahleova H, Levin S, Barnard ND. Plant-based diets for healthy aging. J Am Coll Nutr. 2021;40(5):478–9. https://pubmed.ncbi.nlm.nih.gov/32643581/

2178

O’Hara JK. The $11 trillion reward: how simple dietary changes can save lives and money, and how we get there. UCSusa.org. https://www.ucsusa.org/sites/default/files/2019–09/11-trillion-reward.pdf. Published August 2013. Accessed December 15, 2021.; https://www.ucsusa.org/sites/default/files/2019-09/11-trillion-reward.pdf

2179

Cross AJ, Pollock JRA, Bingham SA. Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res. 2003;63(10):2358–60. https://pubmed.ncbi.nlm.nih.gov/12750250/

2180

Tucker KL, Hallfrisch J, Qiao N, Muller D, Andres R, Fleg JL. The combination of high fruit and vegetable and low saturated fat intakes is more protective against mortality in aging men than is either alone: the Baltimore Longitudinal Study of Aging. J Nutr. 2005;135(3):556–61. https://pubmed.ncbi.nlm.nih.gov/15735093/

2181

Jenkins DJ, Kendall CW. The Garden of Eden: plant-based diets, the genetic drive to store fat and conserve cholesterol, and implications for epidemiology in the 21st century. Epidemiology. 2006;17(2):128–30. https://pubmed.ncbi.nlm.nih.gov/16477249/

2182

Eaton SB, Konner M. Paleolithic nutrition. A consideration of its nature and current implications. N Engl J Med. 1985;312(5):283–9. https://pubmed.ncbi.nlm.nih.gov/2981409/

2183

Anderson JW, Konz EC, Jenkins DJ. Health advantages and disadvantages of weight-reducing diets: a computer analysis and critical review. J Am Coll Nutr. 2000;19(5):578–90. https://pubmed.ncbi.nlm.nih.gov/11022871/

2184

Hladik CM, Pasquet P. The human adaptations to meat eating: a reappraisal. Hum Evol. 2002;17(3–4):199–206. https://link.springer.com/article/10.1007/BF02436371

2185

Milton K. Micronutrient intakes of wild primates: are humans different? Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):47–59. https://pubmed.ncbi.nlm.nih.gov/14527629/

2186

Jenkins DJA, Kendall CWC, Marchie A, et al. The Garden of Eden – plant based diets, the genetic drive to conserve cholesterol and its implications for heart disease in the 21st century. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):141–51. https://pubmed.ncbi.nlm.nih.gov/14527636/

2187

Larsen SC, Ängquist L, Sørensen TI, Heitmann BL. 24h urinary sodium excretion and subsequent change in weight, waist circumference and body composition. PLoS ONE. 2013;8(7):e69689. https://pubmed.ncbi.nlm.nih.gov/23936079/

2188

Roberts WC. High salt intake, its origins, its economic impact, and its effect on blood pressure. Am J Cardiol. 2001;88(11):1338–46. https://pubmed.ncbi.nlm.nih.gov/11728372/

2189

Yin X, Tian M, Neal B. Sodium reduction: how big might the risks and benefits be? Heart Lung Circ. 2021;30(2):180–5. https://pubmed.ncbi.nlm.nih.gov/32855069/

2190

Afshin A, Sur PJ, Fay KA, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958–72. https://pubmed.ncbi.nlm.nih.gov/30954305/

2191

MacGregor GA, Markandu ND, Best FE, et al. Double-blind randomised crossover trial of moderate sodium restriction in essential hypertension. Lancet. 1982;1(8268):351–5. https://pubmed.ncbi.nlm.nih.gov/6120346/

2192

Rudelt A, French S, Harnack L. Fourteen-year trends in sodium content of menu offerings at eight leading fast-food restaurants in the USA. Public Nutr. 2014;17(8):1682–8. https://pubmed.ncbi.nlm.nih.gov/24018166/

2193

Suckling RJ, He FJ, Markandu ND, MacGregor GA. Dietary salt influences postprandial plasma sodium concentration and systolic blood pressure. Kidney Int. 2012;81(4):407–11. https://pubmed.ncbi.nlm.nih.gov/22048126/

2194

Chobufo MD, Gayam V, Soluny J, et al. Prevalence and control rates of hypertension in the USA: 2017–2018. Int J Cardiol Hypertens. 2020;6:100044. https://pubmed.ncbi.nlm.nih.gov/33447770/

2195

Celermajer DS, Neal B. Excessive sodium intake and cardiovascular disease: a-salting our vessels. J Am Coll Cardiol. 2013;61(3):344–5. https://pubmed.ncbi.nlm.nih.gov/23141488/

2196

Mancilha-Carvalho J de J, de Souza e Silva NA. The Yanomami Indians in the INTERSALT Study. Arq Bras Cardiol. 2003;80(3):289–300. https://pubmed.ncbi.nlm.nih.gov/12856272/

2197

Roberts WC. High salt intake, its origins, its economic impact, and its effect on blood pressure. Am J Cardiol. 2001;88(11):1338–46. https://pubmed.ncbi.nlm.nih.gov/11728372/

2198

Cappuccio FP, Capewell S, Lincoln P, McPherson K. Policy options to reduce population salt intake. BMJ. 2011;343:d4995. https://pubmed.ncbi.nlm.nih.gov/21835876/

2199

Toldrá F, Barat JM. Strategies for salt reduction in foods. Recent Pat Food Nutr Agric. 2012;4(1):19–25. https://pubmed.ncbi.nlm.nih.gov/22316270/

2200

Appel LJ, Anderson CA. Compelling evidence for public health action to reduce salt intake. N Engl J Med. 2010;362(7):650–2. https://pubmed.ncbi.nlm.nih.gov/20089959/

2201

Drewnowski A, Rehm CD. Sodium intakes of US children and adults from foods and beverages by location of origin and by specific food source. Nutrients. 2013;5(6):1840–55. https://pubmed.ncbi.nlm.nih.gov/23760055/

2202

.;

2203

Select Committee on Nutrition and Human Needs. Dietary Goals for the United States – Supplemental Views. U.S. Government Printing Office; 1977. https://naldc.nal.usda.gov/catalog/1759572

2204

Foscolou A, Critselis E, Tyrovolas S, et al. The association of sodium intake with successful aging, in 3,349 middle-aged and older adults: results from the ATTICA and MEDIS cross-sectional epidemiological studies. Nutr Healthy Aging. 2020;5(4):287–96. https://content.iospress.com/articles/nutrition-and-healthy-aging/nha190080

2205

Madiloggovit J, Chotechuang N, Trachootham D. Impact of self-tongue brushing on taste perception in Thai older adults: a pilot study. Geriatr Nurs. 2016;37(2):128–36. https://pubmed.ncbi.nlm.nih.gov/26747405/

2206

Quirynen M, Avontroodt P, Soers C, Zhao H, Pauwels M, van Steenberghe D. Impact of tongue cleansers on microbial load and taste. J Clin Periodontol. 2004;31(7):506–10. https://pubmed.ncbi.nlm.nih.gov/15191584/

2207

Madiloggovit J, Chotechuang N, Trachootham D. Impact of self-tongue brushing on taste perception in Thai older adults: a pilot study. Geriatr Nurs. 2016;37(2):128–36. https://pubmed.ncbi.nlm.nih.gov/26747405/

На страницу:
58 из 80