
Полная версия
Живи долго! Научный подход к долгой молодости и здоровью
Skordalakes E. Telomerase and the benefits of healthy living. Lancet Oncol. 2008;9(11):1023–4. https://pubmed.ncbi.nlm.nih.gov/19012852/
2021
Ornish D, Lin J, Chan JM, et al. Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol. 2013;14(11):1112–20. https://pubmed.ncbi.nlm.nih.gov/24051140/
2022
В российском прокате – «Отпуск по обмену». – Примеч. ред.
2023
Blackburn EH, Epel ES. Too toxic to ignore. Nature. 2012;490(7419):169–71. https://pubmed.ncbi.nlm.nih.gov/23060172/
2024
Epel ES, Lin J, Dhabhar FS, et al. Dynamics of telomerase activity in response to acute psychological stress. Brain Behav Immun. 2010;24(4):531–9. https://pubmed.ncbi.nlm.nih.gov/20018236/
2025
Damjanovic AK, Yang Y, Glaser R, et al. Accelerated telomere erosion is associated with a declining immune function of caregivers of Alzheimer’s disease patients. J Immunol. 2007;179(6):4249–54. https://pubmed.ncbi.nlm.nih.gov/17785865/
2026
Schutte NS, Malouff JM, Keng SL. Meditation and telomere length: a meta-analysis. Psychol Health. 2020;35(8):901–15. https://pubmed.ncbi.nlm.nih.gov/31903785/
2027
Cherkas LF, Hunkin JL, Kato BS, et al. The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med. 2008;168(2):154–8. https://pubmed.ncbi.nlm.nih.gov/18227361/
2028
Tucker LA. Walking and biologic ageing: evidence based on NHANES telomere data. J Sports Sci. 2020;38(9):1026–35. https://pubmed.ncbi.nlm.nih.gov/32175820/
2029
Lin X, Zhou J, Dong B. Effect of different levels of exercise on telomere length: A systematic review and meta-analysis. J Rehabil Med. 2019;51(7):473–8. https://pubmed.ncbi.nlm.nih.gov/31093683/
2030
Mundstock E, Zatti H, Louzada FM, et al. Effects of physical activity in telomere length: Systematic review and meta-analysis. Ageing Res Rev. 2015;22:72–80. https://pubmed.ncbi.nlm.nih.gov/25956165/
2031
Abrahin O, Cortinhas-Alves EA, Vieira RP, Guerreiro JF. Elite athletes have longer telomeres than sedentary subjects: a meta-analysis. Exp Gerontol. 2019;119:138–45. https://pubmed.ncbi.nlm.nih.gov/30735724/
2032
Aguiar SS, Sousa CV, Santos PA, et al. Master athletes have longer telomeres than age-matched non-athletes. A systematic review, meta-analysis and discussion of possible mechanisms. Exp Gerontol. 2021;146:111212. https://pubmed.ncbi.nlm.nih.gov/33387607/
2033
Denham J, Nelson CP, O’Brien BJ, et al. Longer leukocyte telomeres are associated with ultra-endurance exercise independent of cardiovascular risk factors. PLoS One. 2013;8(7):e69377. https://pubmed.ncbi.nlm.nih.gov/23936000/
2034
Werner C, Fürster T, Widmann T, et al. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation. 2009;120(24):2438–47. https://pubmed.ncbi.nlm.nih.gov/19948976/
2035
Friedenreich CM, Wang Q, Ting NS, et al. Effect of a 12-month exercise intervention on leukocyte telomere length: results from the ALPHA Trial. Cancer Epidemiol. 2018;56:67–74. https://pubmed.ncbi.nlm.nih.gov/30075329/
2036
Sjögren P, Fisher R, Kallings L, Svenson U, Roos G, Hellénius ML. Stand up for health – avoiding sedentary behaviour might lengthen your telomeres: secondary outcomes from a physical activity RCT in older people. Br J Sports Med. 2014;48(19):1407–9. https://pubmed.ncbi.nlm.nih.gov/25185586/
2037
Mason C, Risques RA, Xiao L, et al. Independent and combined effects of dietary weight loss and exercise on leukocyte telomere length in postmenopausal women. Obesity (Silver Spring). 2013;21(12):E549–54. https://pubmed.ncbi.nlm.nih.gov/23640743/
2038
Werner CM, Hecksteden A, Morsch A, et al. Differential effects of endurance, interval, and resistance training on telomerase activity and telomere length in a randomized, controlled study. Eur Heart J. 2019;40(1):34–46. https://pubmed.ncbi.nlm.nih.gov/30496493/
2039
Werner CM, Hecksteden A, Morsch A, et al. Differential effects of endurance, interval, and resistance training on telomerase activity and telomere length in a randomized, controlled study. Eur Heart J. 2019;40(1):34–46. https://pubmed.ncbi.nlm.nih.gov/30496493/
2040
To-Miles FYL, Backman CL. What telomeres say about activity and health: a rapid review. Can J Occup Ther. 2016;83(3):143–53. https://pubmed.ncbi.nlm.nih.gov/27053148/
2041
Mason C, Risques RA, Xiao L, et al. Independent and combined effects of dietary weight loss and exercise on leukocyte telomere length in postmenopausal women. Obesity (Silver Spring). 2013;21(12):E549–54. https://pubmed.ncbi.nlm.nih.gov/23640743/
2042
Himbert C, Thompson H, Ulrich CM. Effects of intentional weight loss on markers of oxidative stress, DNA repair and telomere length – a systematic review. Obes Facts. 2017;10(6):648–65. https://pubmed.ncbi.nlm.nih.gov/29237161/
2043
Ornish D, Lin J, Daubenmier J, et al. Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol. 2008;9(11):1048–57. https://pubmed.ncbi.nlm.nih.gov/18799354/
2044
Ornish D, Lin J, Chan JM, et al. Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol. 2013;14(11):1112–20. https://pubmed.ncbi.nlm.nih.gov/24051140/
2045
Lulkiewicz M, Bajsert J, Kopczynski P, Barczak W, Rubis B. Telomere length: how the length makes a difference. Mol Biol Rep. 2020;47(9):7181–8. https://pubmed.ncbi.nlm.nih.gov/32876842/
2046
Prieto-Oliveira P. Telomerase activation in the treatment of aging or degenerative diseases: a systematic review. Mol Cell Biochem. 2021;476(2):599–607. https://pubmed.ncbi.nlm.nih.gov/33001374/
2047
De Meyer T, Bekaert S, De Buyzere ML, et al. Leukocyte telomere length and diet in the apparently healthy, middle-aged Asklepios population. Sci Rep. 2018;8(1):6540. https://pubmed.ncbi.nlm.nih.gov/29695838/
2048
Tucker LA. Milk fat intake and telomere length in U.S. women and men: the role of the milk fat fraction. Oxid Med Cell Longev. 2019;2019:1574021. https://pubmed.ncbi.nlm.nih.gov/31772698/
2049
Marin C, Delgado-Lista J, Ramirez R, et al. Mediterranean diet reduces senescence-associated stress in endothelial cells. Age (Dordr). 2012;34(6):1309–16. https://pubmed.ncbi.nlm.nih.gov/21894446/
2050
Alonso-Pedrero L, Ojeda-Rodríguez A, Martínez-González MA, Zalba G, Bes-Rastrollo M, Marti A. Ultra-processed food consumption and the risk of short telomeres in an elderly population of the Seguimiento Universidad de Navarra (SUN) Project. Am J Clin Nutr. 2020;111(6):1259–66. https://pubmed.ncbi.nlm.nih.gov/32330232/
2051
Askari M, Heshmati J, Shahinfar H, Tripathi N, Daneshzad E. Ultra-processed food and the risk of overweight and obesity: a systematic review and meta-analysis of observational studies. Int J Obes (Lond). 2020;44(10):2080–91. https://pubmed.ncbi.nlm.nih.gov/32796919/
2052
Pagliai G, Dinu M, Madarena MP, Bonaccio M, Iacoviello L, Sofi F. Consumption of ultra-processed foods and health status: a systematic review and meta-analysis. Br J Nutr. 2021;125(3):308–18. https://pubmed.ncbi.nlm.nih.gov/32792031/
2053
Strandberg TE, Strandberg AY, Saijonmaa O, Tilvis RS, Pitkälä KH, Fyhrquist F. Association between alcohol consumption in healthy midlife and telomere length in older men. The Helsinki Businessmen Study. Eur J Epidemiol. 2012;27(10):815–22. https://pubmed.ncbi.nlm.nih.gov/22875407/
2054
Maugeri A, Barchitta M, Magnano San Lio R, et al. The effect of alcohol on telomere length: a systematic review of epidemiological evidence and a pilot study during pregnancy. Int J Environ Res Public Health. 2021;18(9):5038. https://pubmed.ncbi.nlm.nih.gov/34068820/
2055
Huang Y, Cao D, Chen Z, et al. Red and processed meat consumption and cancer outcomes: umbrella review. Food Chem. 2021;356:129697. https://pubmed.ncbi.nlm.nih.gov/33838606/
2056
Fretts AM, Howard BV, Siscovick DS, et al. Processed meat, but not unprocessed red meat, is inversely associated with leukocyte telomere length in the Strong Heart Family Study. J Nutr. 2016;146(10):2013–8. https://pubmed.ncbi.nlm.nih.gov/22277554/
2057
De Meyer T, Bekaert S, De Buyzere ML, et al. Leukocyte telomere length and diet in the apparently healthy, middle-aged Asklepios population. Sci Rep. 2018;8(1):6540. https://pubmed.ncbi.nlm.nih.gov/29695838/
2058
Nettleton JA, Diez-Roux A, Jenny NS, Fitzpatrick AL, Jacobs DR Jr. Dietary patterns, food groups, and telomere length in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2008;88(5):1405–12. https://pubmed.ncbi.nlm.nih.gov/18996878/
2059
Galiè S, Canudas S, Muralidharan J, García-Gavilán J, Bulló M, Salas-Salvadó J. Impact of nutrition on telomere health: systematic review of observational cohort studies and randomized clinical trials. Adv Nutr. 2020;11(3):576–601. https://pubmed.ncbi.nlm.nih.gov/31688893/
2060
Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/
2061
Farzaneh-Far R, Lin J, Epel ES, Harris WS, Blackburn EH, Whooley MA. Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. JAMA. 2010;303(3):250. https://pubmed.ncbi.nlm.nih.gov/20085953/
2062
Pawelczyk T, Grancow-Grabka M, Trafalska E, Szemraj J, Zurner N, Pawelczyk A. Telomerase level increase is related to n-3 polyunsaturated fatty acid efficacy in first episode schizophrenia: secondary outcome analysis of the OFFER randomized clinical trial. Prog Neuropsychopharmacol Biol Psychiatry. 2018;83:142–8. https://pubmed.ncbi.nlm.nih.gov/31098654/
2063
O’Callaghan N, Parletta N, Milte CM, Benassi-Evans B, Fenech M, Howe PRC. Telomere shortening in elderly individuals with mild cognitive impairment may be attenuated with ¿-3 fatty acid supplementation: a randomized controlled pilot study. Nutrition. 2014;30(4):489–91. https://pubmed.ncbi.nlm.nih.gov/24342530/
2064
Holub A, Mousa S, Abdolahi A, et al. The effects of aspirin and N-3 fatty acids on telomerase activity in adults with diabetes mellitus. Nutr Metab Cardiovasc Dis. 2020;30(10):1795–9. https://pubmed.ncbi.nlm.nih.gov/32723580/
2065
Kiecolt-Glaser JK, Epel ES, Belury MA, et al. Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: a randomized controlled trial. Brain Behav Immun. 2013;28:16–24. https://pubmed.ncbi.nlm.nih.gov/23010452/
2066
Barden A, O’Callaghan N, Burke V, et al. n–3 fatty acid supplementation and leukocyte telomere length in patients with chronic kidney disease. Nutrients. 2016;8(3):175. https://pubmed.ncbi.nlm.nih.gov/27007392/
2067
Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/
2068
Pitkänen N, Pahkala K, Rovio SP, et al. Effects of randomized controlled infancy-onset dietary intervention on leukocyte telomere length – the Special Turku Coronary Risk Factor Intervention Project (STRIP). Nutrients. 2021;13(2):318. https://pubmed.ncbi.nlm.nih.gov/33499376/
2069
Marin C, Delgado-Lista J, Ramirez R, et al. Mediterranean diet reduces senescence-associated stress in endothelial cells. Age (Dordr). 2012;34(6):1309–16. https://pubmed.ncbi.nlm.nih.gov/21894446/
2070
Canudas S, Becerra-Tomás N, Hernández-Alonso P, et al. Mediterranean diet and telomere length: a systematic review and meta-analysis. Adv Nutr. 2020;11(6):1544–54. https://pubmed.ncbi.nlm.nih.gov/32730558/
2071
Tucker LA. Milk fat intake and telomere length in U.S. women and men: the role of the milk fat fraction. Oxid Med Cell Longev. 2019;2019:e1574021. https://pubmed.ncbi.nlm.nih.gov/31772698/
2072
Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/
2073
Tucker LA. Dietary fiber and telomere length in 5674 U.S. adults: an NHANES study of biological aging. Nutrients. 2018;10(4):400. https://pubmed.ncbi.nlm.nih.gov/29570620/
2074
Fretts AM, Howard BV, Siscovick DS, et al. Processed meat, but not unprocessed red meat, is inversely associated with leukocyte telomere length in the Strong Heart Family Study. J Nutr. 2016;146(10):2013–8. https://pubmed.ncbi.nlm.nih.gov/22277554/
2075
Leung CW, Laraia BA, Needham BL, et al. Soda and cell aging: associations between sugar-sweetened beverage consumption and leukocyte telomere length in healthy adults from the National Health and Nutrition Examination Surveys. Am J Public Health. 2014;104(12):2425–31. https://pubmed.ncbi.nlm.nih.gov/25322305/
2076
Valdes AM, Andrew T, Gardner JP, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366(9486):662–4. https://pubmed.ncbi.nlm.nih.gov/16112303/
2077
Institute of Medicine. Dietary Reference Intakes: Proposed Definition of Dietary Fiber. National Academies Press; 2001. https://pubmed.ncbi.nlm.nih.gov/25057569/
2078
Xu Q, Parks CG, DeRoo LA, Cawthon RM, Sandler DP, Chen H. Multivitamin use and telomere length in women. Am J Clin Nutr. 2009;89(6):1857–63. https://pubmed.ncbi.nlm.nih.gov/19279081/
2079
Min KB, Min JY. Association between leukocyte telomere length and serum carotenoid in US adults. Eur J Nutr. 2017;56(3):1045–52. https://pubmed.ncbi.nlm.nih.gov/26818530/
2080
Liu JJ, Crous-Bou M, Giovannucci E, De Vivo I. Coffee consumption is positively associated with longer leukocyte telomere length in the Nurses’ Health Study. J Nutr. 2016;146(7):1373–8. https://pubmed.ncbi.nlm.nih.gov/27281805/
2081
Tucker LA. Caffeine consumption and telomere length in men and women of the National Health and Nutrition Examination Survey (NHANES). Nutr Metab (Lond). 2017;14(1):10. https://pubmed.ncbi.nlm.nih.gov/28603543/
2082
Freitas-Simoes TM, Ros E, Sala-Vila A. Telomere length as a biomarker of accelerated aging: is it influenced by dietary intake? Curr Opin Clin Nutr Metab Care. 2018;21(6):430–6. https://pubmed.ncbi.nlm.nih.gov/30148739/
2083
Chan R, Woo J, Suen E, Leung J, Tang N. Chinese tea consumption is associated with longer telomere length in elderly Chinese men. Br J Nutr. 2010;103(1):107–13. https://pubmed.ncbi.nlm.nih.gov/19671205/
2084
Sheng R, Gu ZL, Xie ML. Epigallocatechin gallate, the major component of polyphenols in green tea, inhibits telomere attrition mediated cardiomyocyte apoptosis in cardiac hypertrophy. Int J Cardiol. 2013;162(3):199–209. https://pubmed.ncbi.nlm.nih.gov/22000973/
2085
Rusak G, Komes D, Likic S, Horžic D, Kovac M. Phenolic content and antioxidative capacity of green and white tea extracts depending on extraction conditions and the solvent used. Food Chem. 2008;110(4):852–8. https://pubmed.ncbi.nlm.nih.gov/26047270/
2086
Hovanloo F, Fallah Huseini H, Hedayati M, Teimourian M. Effects of aerobic training combined with green tea extract on leukocyte telomere length, quality of life and body composition in elderly women. J Med Plants. 2016;15(59):47–57. https://www.researchgate.net/publication/309402738_Effects_of_Aerobic_Training_Combined_with_Green_Tea_Extract_on_Leukocyte_Telomere_Length_Quality_of_Life_and_Body_Composition_in_Elderly_Women
2087
Tran HTT, Schreiner M, Schlotz N, Lamy E. Short-term dietary intervention with cooked but not raw Brassica leafy vegetables increases telomerase activity in CD8+ lymphocytes in a randomized human trial. Nutrients. 2019;11(4):786. https://pubmed.ncbi.nlm.nih.gov/30959753/
2088
Sarma DN, Barrett ML, Chavez ML, et al. Safety of green tea extracts: a systematic review by the US Pharmacopeia. Drug Saf. 2008;31(6):469–84. https://pubmed.ncbi.nlm.nih.gov/18484782/
2089
Yu Z, Samavat H, Dostal AM, et al. Effect of green tea supplements on liver enzyme elevation: results from a randomized intervention study in the United States. Cancer Prev Res (Phila). 2017;10(10):571–9. https://pubmed.ncbi.nlm.nih.gov/28765194/
2090
Hu J, Webster D, Cao J, Shao A. The safety of green tea and green tea extract consumption in adults – results of a systematic review. Regul Toxicol Pharmacol. 2018;95:412–33. https://pubmed.ncbi.nlm.nih.gov/29580974/
2091
O’Callaghan N, Parletta N, Milte CM, Benassi-Evans B, Fenech M, Howe PRC. Telomere shortening in elderly individuals with mild cognitive impairment may be attenuated with ¿-3 fatty acid supplementation: a randomized controlled pilot study. Nutrition. 2014;30(4):489–91. https://pubmed.ncbi.nlm.nih.gov/24342530/
2092
Holub A, Mousa S, Abdolahi A, et al. The effects of aspirin and N-3 fatty acids on telomerase activity in adults with diabetes mellitus. Nutr Metab Cardiovasc Dis. 2020;30(10):1795–9. https://pubmed.ncbi.nlm.nih.gov/32723580/
2093
Kiecolt-Glaser JK, Epel ES, Belury MA, et al. Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: a randomized controlled trial. Brain Behav Immun. 2013;28:16–24. https://pubmed.ncbi.nlm.nih.gov/23010452/
2094
Barden A, O’Callaghan N, Burke V, et al. n–3 fatty acid supplementation and leukocyte telomere length in patients with chronic kidney disease. Nutrients. 2016;8(3):175. https://pubmed.ncbi.nlm.nih.gov/27007392/
2095
García-Calzón S, Martínez-González MA, Razquin C, et al. Mediterranean diet and telomere length in high cardiovascular risk subjects from the PREDIMED-NAVARRA study. Clin Nutr. 2016;35(6):1399–405. https://pubmed.ncbi.nlm.nih.gov/27083496/
2096
Pusceddu I, Herrmann M, Kirsch SH, et al. Prospective study of telomere length and LINE-1 methylation in peripheral blood cells: the role of B vitamins supplementation. Eur J Nutr. 2016;55(5):1863–73. https://pubmed.ncbi.nlm.nih.gov/27083496/
2097
Sharif R, Thomas P, Zalewski P, Fenech M. Zinc supplementation influences genomic stability biomarkers, antioxidant activity, and zinc transporter genes in an elderly Australian population with low zinc status. Mol Nutr Food Res. 2015;59(6):1200–12. https://pubmed.ncbi.nlm.nih.gov/25755079/
2098
Zarei M, Zarezadeh M, Hamedi Kalajahi F, Javanbakht MH. The relationship between vitamin D and telomere/telomerase: a comprehensive review. J Frailty Aging. 2021;10(1):2–9. https://pubmed.ncbi.nlm.nih.gov/33331615/
2099
Zhu H, Guo D, Li K, et al. Increased telomerase activity and vitamin D supplementation in overweight African Americans. Int J Obes (Lond). 2012;36(6):805–9. https://pubmed.ncbi.nlm.nih.gov/21986705/
2100
Yang T, Wang H, Xiong Y, et al. Vitamin D supplementation improves cognitive function through reducing oxidative stress regulated by telomere length in older adults with mild cognitive impairment: a 12-month randomized controlled trial. J Alzheimers Dis. 2020;78(4):1509–18. https://pubmed.ncbi.nlm.nih.gov/33164936/
2101
Guo Z, Lou Y, Kong M, Luo Q, Liu Z, Wu J. A systematic review of phytochemistry, pharmacology and pharmacokinetics on Astragali radix: implications for Astragali radix as a personalized medicine. Int J Mol Sci. 2019;20(6):1463. https://pubmed.ncbi.nlm.nih.gov/30909474/
2102
Liu P, Zhao H, Luo Y. Anti-aging implications of Astragalus membranaceus (Huangqi): a well-known Chinese tonic. Aging Dis. 2017;8(6):868–86. https://pubmed.ncbi.nlm.nih.gov/29344421/
2103
Fauce SR, Jamieson BD, Chin AC, et al. Telomerase-based pharmacologic enhancement of antiviral function of human CD8+ T lymphocytes. J Immunol. 2008;181(10):7400–6. https://pubmed.ncbi.nlm.nih.gov/18981163/
2104
Dow CT, Harley CB. Evaluation of an oral telomerase activator for early age-related macular degeneration – a pilot study. Clin Ophthalmol. 2016;10:243–9. https://pubmed.ncbi.nlm.nih.gov/26869760/
2105
United States of America before the Federal Trade Commission in the matter of Telomerase Activation Sciences, Inc., and Noel Thomas Patton. Docket No. C-4644. FTC.gov. https://www.ftc.gov/system/files/documents/cases/142_3103_-_telomerase_complaint_final.pdf. Updated April 19, 2018. Accessed December10, 2021.; https://www.ftc.gov/system/files/documents/cases/142_3103_-_telomerase_complaint_final.pdf
2106
Tsoukalas D, Fragkiadaki P, Docea AO, et al. Discovery of potent telomerase activators: unfolding new therapeutic and anti-aging perspectives. Mol Med Rep. 2019;20(4):3701–8. https://pubmed.ncbi.nlm.nih.gov/31485647/
2107
Tsoukalas D, Fragkiadaki P, Docea AO, et al. Discovery of potent telomerase activators: unfolding new therapeutic and anti-aging perspectives. Mol Med Rep. 2019;20(4):3701–8. https://pubmed.ncbi.nlm.nih.gov/31485647/
2108
Chandrika UG, Kumara PAASP. Gotu kola (Centella asiatica): nutritional properties and plausible health benefits. Adv Food Nutr Res. 2015;76:125–57. https://pubmed.ncbi.nlm.nih.gov/26602573/
2109
Tsoukalas D, Fragkiadaki P, Docea AO, et al. Discovery of potent telomerase activators: unfolding new therapeutic and anti-aging perspectives. Mol Med Rep. 2019;20(4):3701–8. https://pubmed.ncbi.nlm.nih.gov/31485647/
2110
Puttarak P, Dilokthornsakul P, Saokaew S, et al. Effects of Centella asiatica (L.) Urb. on cognitive function and mood related outcomes: a systematic review and meta-analysis. Sci Rep. 2017;7(1):10646. https://pubmed.ncbi.nlm.nih.gov/28878245/
2111
Larrick JW, Mendelsohn AR. Telomerase redux: ready for prime time? Rejuvenation Res. 2015;18(2):185–7. https://pubmed.ncbi.nlm.nih.gov/25790341/