bannerbanner
Парадоксы эволюции. Как наличие ресурсов и отсутствие внешних угроз приводит к самоуничтожению вида и что мы можем с этим сделать
Парадоксы эволюции. Как наличие ресурсов и отсутствие внешних угроз приводит к самоуничтожению вида и что мы можем с этим сделать

Полная версия

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
6 из 10

Понимание взаимоотношений и разграничений между когерентной микроскопической квантовой реальностью и преимущественно декогерентным макроскопическим (видимым) миром стало бы грандиозным шагом в понимании базовых механизмов жизни. Например, наложение декогерентной внешней среды на когерентную внутреннюю среду митохондрий практически моментально меняет их состояние. Внедрение временной декогерентности в систему, базирующуюся на когерентности, такой, как ЭТЦ, может стать сигналом запуска адаптивной функции, например через образование АФК. Окружающая среда модулирует работу митохондрий на грани квантовой и классической физической реальности. То есть митохондрион может действовать как сенсор, балансирующий между квантовым и классическим миром. Любое изменение системы мгновенно изменяет ситуацию на ее выходе.

Как мы увидим далее, в информационной динамической системе управляющие элементы должны иметь бОльшую сложность, нежели управляемые, а сама же сложность в какой-то момент развития становится неотличимой от случайности (БОН: глава VI). В этом смысле ключевые функциональные механизмы митохондрий, управляемые, возможно, квантовыми эффектами, могут находиться на той грани квантовой случайности и функциональной (вычислительной) сложности, недостижимой для других клеточных структур.

Возникновение сложных живых систем могло произойти только при наличии возмущений, когда способность системы воспринимать и обрабатывать информацию определяет направление эволюции. Можно сказать, что жизнь и «разумность» (предикативность автономных систем) суть одно и то же. С возникновением жизни в мир пришла невиданная ранее конкуренция, связанная с вызовами со стороны окружающей среды и непрерывным участием естественного отбора. Конкуренция вела к эволюции на все более и более высоких порядках разумности и когнитивных способностей. Одной из пружин этого механизма для сложных эукариотических организмов должна служить положительная для живой системы стрессовая стимуляция (гормезис) митохондрий. Несомненно, ключевой стратегией выживания, помимо адаптации, является использование информации с целью активного изменения окружающей среды для достижения конкурентного преимущества. Люди достигли это тысячелетия назад, осознав, что должны жить здоровыми на протяжении взрослой жизни. Представляется, что, удалив факторы горметического стресса, сделав свою жизнь слишком комфортной, мы не получили оптимальной квантовой эффективности митохондрий и оказались хуже приспособленными к достижению и поддержанию максимально возможного здоровья. И напротив, сознательное внесение горметических факторов в повседневную жизнь должно приближать нас к этому крайне желательному состоянию.

Библиографический список

1. Виноградская И. С., Кузнецова Т. Г., Супруненко Е. А. (2014). Митохондриальная сеть скелетных мышечных волокон. – Вестн. Моск. Ун-та. Сер. 16. Биология № 2, 16–25.

2. Лейн Н. (2018) Вопрос жизни. Энергия, эволюция и происхождение сложности. – М.: АСТ.

3. Ноу Л. (2020) Эгоистичная митохондрия. Как сохранить здоровье и отодвинуть старость. – СПб: Питер.

4. Блюменфельд Л. А. (1977). Проблемы биологической физики. – М.: Наука.

5. Dobzhansky T. (1973) Nothing in Biology Makes Sense except in the Light of Evolution. Am. Biol. Teacher35, 125–129.

6. Pross A. (2012). What is Life? How Chemistry Becomes Biology, Oxford University Press, United Kingdom.

7. Laughlin S. B., de Ruyter van Steveninck R. R. and Anderson J. C. (1998) The metabolic cost of neural information. Nat. Neurosci. 1, 36–41.

8. Gatenby, R. A. and Frieden, B. R. (2013). The critical roles of information and nonequilibrium thermodynamics in evolution of living systems. Bull. Math. Biol. 75, 589–601.

9. Schroedinger E. (1944). What is Life? The Physical Aspect of the Living Cell, Cambride University Press.

10. Nunn A. V., Guy G. W. and Bell J. D. (2014). The intelligence paradox; will ET get the metabolic syndrome? Lessons from and for Earth. Nutr. Metab. 11, 34.

11. Lane N. and Martin W. (2010). Theenergetics of genome complexity. Nature 467, 929–934.

12. Tulving E. (1985). How many memory systems are there? Am. Psychol. 40, 385–398.

13. Howarth C., Gleeson P. and Attwell D. (2012). Updated energy budgets for neural computation in the neocortex and cerebellum. J. Cereb. Blood Flow Metab. 32, 1222–1232.

14. Harris J. J., Jolivet R. and Attwell D. (2012). Synaptic energy use and supply. Neuron 75, 762–777.

15. Attwell D. and Laughlin S. B. (2001). An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145.

16. Hudetz, A. G. (2012). General anesthesia and human brain connectivity. Brain Connect. 2, 291–302.

17. Krueger J. M., Frank M. G., Wisor J. P. and Roy S. (2015) Sleep function: toward elucidating an enigma. Sleep Med. Rev. 28, 42–50.

18. Penrose R. (1994). Shadows of the Mind; ASearch for the Missing Science of Consciousness, Oxford University Press, Great Britain.

19. Tarlaci S. and Pregnolato M. (2016). Quantum neurophysics: fromnon-living matter to quantum neurobiology and psychopathology. Int. J. Psychophysiol. 103, 161–173.

20. Al-Khalili J. and McFadden J. (2014). Life on the Edge: The Coming of Age of Quantum Biology, Transworld Publishers, Great Britain.

21. Lovley D. R. and Malvankar N. S. (2015). Seeing is believing: novel imaging techniques help clarify microbial nanowire structure and function. Environ. Microbiol. 17, 2209–2215.

22. Tamulis A. and Grigalavicius M. (2014). Quantum entanglement in photoactive prebiotic systems. Syst. Synth. Biol. 8, 117–140.

23. Engel G. S., Calhoun T. R., Read E. L., Ahn T. K., Mancal T., Cheng Y. C., Blankenship, R. E. and Fleming, G. R. (2007). Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786.

24. Fassioli F., Dinshaw R., Arpin P. C. and Scholes G.D. (2014). Photosynthetic light harvesting: excitons and coherence. J. R. Soc. Interface 11, 20130901.

25. Lim J., Palecek D., Caycedo-Soler F., Lincoln C. N., Prior J., von Berlepsch H., Huelga S. F., Plenio M.B., Zigmantas D. and Haue, J. (2015). Vibronic origin of long-lived coherence in an artificial molecular light harvester. Nat. Commun. 6, 7755.

26. Weber S., Ohmes E., Thurnauer M. C., Norris J. R. and Kothe G.(1995). Light-generated nuclear quantum beats: a signature of photosynthesis. Proc. Natl. Acad. Sci. U.S.A. 92, 7789–7793.

27. Craddock T. J., Friesen D., Mane J., Hameroff S. and Tuszynski J. A. (2014). The feasibility of coherent energy transfer in microtubules. J. R. Soc. Interface 11, 20140677.

28. Craddock T. J., Priel A. and Tuszynski J. A. (2014). Keeping time: could quantum beating in microtubules be the basis for the neural synchrony related to consciousness? J. Integr. Neurosci. 13, 293–311.

29. Winkler J.R. and Gray H.B. (2014). Long-range electron tunneling. J. Am. Chem. Soc. 136, 2930–2939.

30. Hayashi T. and Stuchebrukhov A. A. (2011). Quantum electron tunneling in respiratory complex I. J. Phys Chem. B115, 5354–5364.

31. Moser C. C., Farid T. A., Chobot S. E. and Dutton P. L. (2006). Electron tunneling chains of mitochondria. Biochim. Biophys. Acta. 1757, 1096–1109.

32. De Vries S., Dorner K., Strampraad M. J. and Friedrich T. (2015). Electron tunneling rates in respiratory complex I are tuned for efficient energy conversion. Angew Chem. Int. Ed. Engl. 54, 2844–2848.

33. Trixler F. (2013). Quantum tunnelling to the origin and evolution of life. Curr. Org. Chem. 17, 1758–1770.

34. Vattay G., Salahub D., Csabai I., Nassimi A. and Kaufmann S. A. (2015). Quantum criticality at the origin of life. J. Phys. Conf. Ser. 626, 012023.

35. Zhang Y., Gennady P. B. and Kais S. (2015). The radical pair mechanism and the avian chemical compass: quantum coherence and entanglment. Int. J. Quantum Chem. 115, 1327–1341.

36. Gane S., Georganakis D., Maniati K., Vamvakias M., Ragoussis N., Skoulakis E. M. and Turin L. (2013). Molecular vibration-sensing component in human olfaction. PloS One8, e55780.

37. Vattay G., Kauffman S. and Niiranen S. (2014). Quantum biology on the edge of quantum chaos. PloS One9, e8901.

38. Aon M. A., Cortassa S. and O’Rourke B. (2008). Mitochondrial oscillations in physiology and pathophysiology. Adv. Exp. Med. Biol. 641, 98–117.

39. Cortassa S., O’Rourke B. and Aon M. A. (2014). Redox-optimized ROSbalance and the relationship between mitochondrial respiration and ROS. Biochim. Biophys. Acta. 1837, 287–295.

40. Allen J. F. (2015). Why chloroplasts and mitochondria retain their own genomes and genetic systems: colocation for redox regulation of gene expression. Proc. Natl. Acad. Sci. USA. 112, 10231–10238.

41. Mailloux R. J. and Harper, M.E. (2011). Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic. Biol. Med. 51, 1106–111.

42. Moradi N., Scholkmann F. and Salari V. (2015) A study of quantum mechanical probabilities in the classical Hodgkin – Huxley model. J. Integr. Neurosci. 14, 1–17.

43. Summhammer J., Salari V. and Bernroide, G. (2012). Aquantum-mechanical description of ion motion within the confining potentials of voltage-gated ion channels. J. Integr. Neurosci. 11, 123–135.

44. Skulachev V. P. (2001). Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem. Sci. 26, 23–29.

45. Wai T. and Langer T. (2016). Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab. 27, 105–117.

46. Tamulis A. and Grigalavicius M. (2011). The emergence and evolution of life in a «fatty acid world» based on quantum mechanics. Orig. Life Evol. Biosph. 41, 51–71.

47. McGlynn S. E., Chadwick G. L., Kempes C. P. and Orphan V. J. (2015). Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535.

48. Pfeffer C., Larsen S., Song J., Dong M., Besenbacher F., Meyer, R. L., Kjeldsen, K. U., Schreiber L., Gorby Y. A., El-Naggar M. Y. et al. (2012). Filamentous bacteria transport electrons over centimeter distances. Nature 491, 218–221.

49. Wegener G., Krukenberg V., Riedel D., Tegetmeyer H. E. and Boetius A. (2015). Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590.

50. Dudkina N. V., Folea I. M. and Boekema E. J. (2015). Towards structural and functional characterization of photosynthetic and mitochondrial super complexes. Micron 72, 39–51.

51. Lapuente-Brun E., Moreno-Loshuertos R., Acin-Perez R., Latorre-Pellicer A., Colas C., Balsa E., Perales-Clemente E., Quiros P. M., Calvo E., Rodriguez-Hernandez M.A. et al. (2013). Super complex assembly determines electron flux in the mitochondrial electron transport chain. Science 340, 1567–1570.

52. Melo A. N. P. and Teixeira, M. (2016). Supramolecular organization of bacterial aerobic respiratoy chains: from cells and back. Biochim. Biophys. Acta 1857, 190–197.

53. Le Bourg E. (2012). Forecasting continuously increasing life expectancy: what implications? Ageing Res. Rev. 11, 325–328.

54. Robertson H. T. and Allison D. B. (2012). A novel generalized normal distribution for human longevity and other negatively skewed data. PloS One7, e37025.

55. Weon B. M. (2015). A solution to debates over the behavior of mortality at old ages. Biogerontology 16, 375–381.

56. Kaeberlein M., Rabinovitch P. S. and Martin G. M. (2015). Healthy aging: the ultimate preventative medicine. Science 350, 1191–1193.

57. Lane, N. (2003). A unifying view of ageing and disease: the double-agent theory. J. Theor. Biol. 225, 531–540.

58. Salminen A., Huuskonen J., Ojala J., Kauppinen A., Kaarniranta K. and Suuronen T. (2008). Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res. Rev. 7, 83–105.

59. Franceschi C., Bonafe M., Valensin S., Olivieri F., De Luca M., Ottaviani E. and De Benedictis G. (2000). Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N.Y. Acad. Sci. 908, 244–254.

60. Speakman J. R. and Mitchell S. E. (2011). Caloric restriction. Mol. Aspects Med. 32, 159–221.

61. Adler M. I. and Bonduriansky R. (2014). Why do the well-fed appear to die young? A new evolutionary hypothesis for the effect of dietary restriction on lifespan. Bioessays 36, 439–450.

62. Baker D. J., Childs B. G., Durik M., Wijers M. E., Sieben C. J., Zhong J.,Saltness R. A., Jeganathan K. B., Verzosa G. C., Pezeshki A. et al. (2016). Naturally occurring p16 (Ink4a) – positive cells shorten healthy lifespan. Nature 530, 184–189.

63. Lowe D., Horvath S. and Raj K. (2016) Epigenetic clock analyses of cellular senescence and ageing. Oncotarget 7, 8524–8531.

64. De Magalhaes J.P. (2012). Programmatic features of aging originating in development: aging mechanisms beyond molecular damage? FASEB J. 26, 4821–4826.

65. Wallace D. C. and Fan W. (2010). Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10, 12–31.

66. Salminen A., Kaarniranta K., Hiltunen M. and Kauppinen A.(2014). Krebs cycle dysfunction shapes epigenetic landscape of chromatin: novel insights into mitochondrial regulation of aging process. Cell. Signal. 26, 1598–1603.

67. Lopez-Otın C., Galluzzi L., Freije J. M. P., Madeo F., Kroemer G. (2013). Metabolic Control of Longevity. Cell, Vol. 166: 4, 802–821.

68. Fedintsev А., Moskalev А. (2020). Stochastic non-enzymatic modification of long-lived macromolecules. – A missing hallmark of aging, Ageing Research Reviews, Vol. 62,101097.

69. Kuilman T., Michaloglou C., Mooi W. J., Peeper D. S. (2010). The essence of senescence. Genes Dev 24, 2463–2479.

70. Saitou M., Lizardo D. Y., Taskent R. O., Millner A., Gokcumen O., Atilla-Gokcumen G. E. (2018). An evolutionary transcriptomics approach links CD36 to membrane remodeling in replicative senescence. Mol Omics. 6; 14 (4): 237–246.

71. Campisi J. (2001). Cellular senescence as a tumor suppressor mechanism. Trends Cell Biol. 11, S27–S31.

72. Munoz-Espin D., Canamero M., Maraver A., Gomez-Lopez G., Contreras J., Murillo-Cuesta S., Rodriguez-Baeza A., Varela-Nieto I., Ruberte J., Collado M., Serrano M. (2013). Programmed cell senescence during mammalian embryonic development. Cell. 155, 1104–1118.

73. Demaria M., Ohtani N., Youssef S. A., Rodier F., Toussaint W., Mitchell J. R., Laberge R. M., Vijg J., Van Steeg H., Dolle M. E., Hoeijmakers J. H., de Bruin A., Hara E., Campisi J. (2014). An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell. 31, 722–733.

74. West A. P., Shadel G. S. and Ghosh S. (2011). Mitochondria in innate immune responses. Nat. Rev. Immunol. 11, 389–402.

75. Barja G. (2013). Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid. Redox Signal. 19, 1420–1445.

76. Tower J. (2015). Mitochondrial maintenance failure in aging and role of sexual dimorphism. Arch. Biochem. Biophys. 576, 17–31.

77. Li M., Schroder R., Ni S., Madea B. and Stonekin, M. (2015). Extensive tissue-related and allele-related mtDNA heteroplasmysuggests positive selection for somatic mutations. Proc. Natl. Acad.Sci. U.S.A. 112, 2491–2496.

78. Tapia P. C. (2006). Sub lethal mitochondrial stress with an attendant stoichiometric augmentation of reactive oxygen species mayprecipitate many of the beneficial alterations in cellular physiology produced by caloric restriction, intermittent fasting, exercise and dietary phytonutrients: «Mitohormesis» for health and vitality. Med. Hypotheses. 66, 832–843.

79. Allocati N., Masulli M., Di Ilio C. and De Laurenzi V. (2015). Die for the community: an overview of programmed cell death in bacteria. Cell. Death. Dis. 6, e 1609.

80. Marraffini L. A. (2015). CRISPR-Cas immunity in prokaryotes. Nature. 526, 55–61.

81. Heussler G. E., Cady K. C., Koeppen K., Bhuju S., Stanton B. A. and O’Toole G. A. (2015). Clustered regularly interspaced short palindromic repeat-dependent, biofilm-specific death of Pseudomonas aeruginosa mediated by increased expression of phage-related genes. Microbiol., e 00129–00115.

Глава IV. Неважно, что ты говоришь. Важно – как

Два капрала (потом один) ползут по линии фронта, сначала весь день, потом всю ночь, чтобы рассказать там одному полковнику что-то важное. Но все равно сначала не поверили, а потом полковник вдруг сам догадался.

Из обсуждения фильма «1917» Сэма Мендеса, 2019

Физическая нагрузка как горметический стресс

Безусловно, физические упражнения, спорт в широком смысле – лучший вид горметического стресса, которому человек себя подвергает добровольно (азартные игры порицаются большей частью современных обществ, финансово в среднем более затратны и не несут, как правило, значительной физической нагрузки, роль которой для поддержания здоровья сложно преувеличить). Не менее чем последние три сотни лет занятия спортом положительным образом, но чисто эмпирически, если не интуитивно, увязывались с состоянием здоровья и профилактикой заболеваний, особенно возрастных или вызванных «нездоровым» образом жизни. Но только в последние десятилетия эта связь получила обоснование на биохимическом и даже биофизическом и термодинамическом уровнях. Любопытно заметить, что возникновение массового спорта и физкультуры во временнóм интервале можно также увязать с возникновением и массовым распространением физически низкоинтенсивного труда. До того полноценное выполнение даже высших феодальных управленческих функций сопровождалось достаточно интенсивной физической нагрузкой, как минимум в форме верховой езды.

В самом общем виде реакция организма на физические упражнения может, разумеется, описываться в терминах общего адаптивного синдрома по Гансу Селье (Hans Selye, 1956), однако некоторые важные физиологические детали делают реакцию на упражнения особенной. Так, важным аспектом является быстрое развитие своеобразной мышечной усталости, отражающей развитие адаптационных реакций организма, которую не вполне можно сопоставить классической стрессовой фазе истощения.

Как пишет Жолт Радак (Zsolt Radak et al., 2007), «без усталости не будет адаптации». Соответственно, диапазон положительной горметической реакции в ответ на физическую нагрузку ограничивается, с одной стороны, «недозагрузкой» без усталости, с другой – «перетренированностью» с дальнейшей физиологической, гормональной и иммунной разрегулированностью.

Но даже на «горметическом» интервале зависимость положительных эффектов от нагрузки не линейная, с резким обрывом на «перетренированности», а колоколообразная. Несоответствующая физической подготовке мышечная нагрузка ведет к структурным нарушениям саркомеров (базовых сократительных единиц мышечной ткани), распаду десмина, отвечающего за механическую связь митохондрий и саркомеров, и мышечной филаментной сети, поддерживающей форму клетки. Но самое главное, что подобная перегрузка с развитием повреждения мышечных клеток вызывает местную воспалительную реакцию, сопровождаемую увеличенным связыванием с ДНК так называемого нуклеарного фактора каппа B (NF-kB) – одного из самых универсальных факторов транскрипции, контролирующего экспрессию огромного числа генов, связанных с формированием иммунного ответа, апоптозом и клеточным делением. Кроме того, активируются протеазы (белок-расщепляющие ферменты), образующие гигантский протеасомный комплекс, что ускоряет деградацию поврежденных мышечных белков (Malm et al., 2004; Peake et al., 2006; Goto and Radak, 2005). Если адаптивные микроповреждения вызывают процесс репарации с несколько избыточным «перевосстановлением» саркомер, то в будущем аналогичная нагрузка не будет вызывать чрезмерной мышечной усталости, снижения максимальной силы и воспаления в отличие от более расширенных повреждений. Есть представление, что процесс мышечной гипертрофии начинается с уровня физической нагрузки, соответствующей приблизительно 60 % от максимальной (по VO2max), но не превышающей по длительности 60 минут (совокупность этих порогов в плане иммунологических эффектов можно считать разделяющей нагрузки умеренной интенсивности от нагрузок высокой интенсивности (Nieman D. C. and Wentz L. M., 2019)). Если этот уровень не достигается, не происходит выработки анаболических гормонов, тестостерона и IGF-1, важнейшего фактора начала интенсивного белкового синтеза. Приближение или достижение уровня максимального потребления кислорода переводит выработку энергии из аэробного в анаэробный режим гликолиза, когда происходит накопление молочной кислоты (лактата) и протонов, которые более не потребляются в перегруженной ЭЦП. В этом случае развитие мышечной усталости сопровождается неприятными ощущениями вплоть до болевых, снижающих мышечную производительность.

В то же время излишний механический стресс при чрезмерной нагрузке может быть опасен и для структуры мышечной ткани: массивное разрушение саркомеров, надрывы соединительнотканных волокон вызывают явления апоптоза и некроза и не позволяют реализоваться восстановительному мышечному росту или приросту физиологической функции.

Важнейшим исходным пунктом положительных физиологических трансформаций при физической нагрузке служит стремительное возрастание митохондриального энергетического метаболизма, что активирует выработку митохондриальных белков, закодированных в ядре. В качестве фронтовых посыльных в тыловые войсковые объединения с депешей о необходимости подкреплений и огневой поддержки направляются нерядовые молекулы с длинным даже в сокращенной форме названием «альфа-1-коактиватор гамма-рецептора, активируемого пероксисомным пролифератором» (peroxisome-proliferator-activated receptor γ co-activator-1α), или сокращенно PPAR γCA-1α, или еще более сокращенно PGC-1α. Но необходимое подкрепление в виде новых мышечных волокон, как обычно, запаздывает, функция митохондрий тем временем разрегулируется, эффективность ЭЦП на фоне возрастающей потребности в энергии АТФ падает, а количество «огнеопасных» молекул АФК и АФА (активных форм азота) нарастает. Собственно, первые яркие всполохи избыточных АФК и АФА, как сигнальные ракеты из митохондрий, и отправляют в путь посыльных PGC-1α и NF-kB. Применение в этот момент антиоксидантов может, как дождь, тушить эти сигнальные ракеты и гасить эффекты адаптации. Обобщенные сводные данные о таком феномене не дают пока однозначного ответа, насколько антиоксиданты могут оказаться вредны в подобных ситуациях (Radek Z. et al., 2017). Но эффекты адаптации не ограничиваются локальными пределами вовлеченных мышц, как может показаться, и начиная с самых небольших по интенсивности тренировок в адаптационные процессы вовлекается уже весь организм.

От физической нагрузки к управлению иммунитетом

Первые данные о выработке нагруженными мышцами иммуноактивных веществ, так называемых цитокинов (а в отношении мышц чаще в последнее время называемых миокинами), относятся еще к 1991 году (Northoff H. and Berg A., 1991), хотя первые сообщения о влиянии физической нагрузки на функции иммунитета появились еще в начале ХХ века: например, американский врач Ральф Клинтон Ларраби заметил еще в 1902 году при исследовании бегунов бостонского марафона, что изменения лейкоцитарной формулы у марафонцев напоминают таковые при воспалении. Но до начала 90-х годов прошлого века изменения иммунной системы при физической нагрузке исследовались преимущественно в отношении спорта высоких достижений, где усматривалась взаимосвязь с преходящей дисфункцией иммунной системы и увеличением подверженности высококвалифицированных спортсменов воспалительным заболеваниям верхних дыхательных путей. Можно повториться, что положительное влияние массового спорта и физкультуры на здоровье практически всегда рассматривалось как само собой разумеющееся в общем контексте «здорового образа жизни».

Обнаружение в начале 90-х секреции цитокинов мышечными клетками выглядело крайне необычно: даже само принятое в то время название цитокинов, сохранившееся до сих пор в номенклатуре этих молекул – интерлейкины (interleukins, IL), отсылало к типичным клеткам иммунной системы – белым кровяным тельцам, лейкоцитам. Первой была подтверждена выработка и секреция мышцами в кровоток интерлейкина-6 (IL-6). Сам интерлейкин-6 был идентифицирован и обозначен как универсальная молекула реакции организма на повреждение в 1989 году, когда Тадамицу Кисимото показал, что ранее известные различные провоспалительные факторы разных типов клеток суть одно и то же, одинаково активируемое упомянутым ранее нуклеарным фактором каппа (NF-kB).

На страницу:
6 из 10