bannerbanner
Парадоксы эволюции. Как наличие ресурсов и отсутствие внешних угроз приводит к самоуничтожению вида и что мы можем с этим сделать
Парадоксы эволюции. Как наличие ресурсов и отсутствие внешних угроз приводит к самоуничтожению вида и что мы можем с этим сделать

Полная версия

Парадоксы эволюции. Как наличие ресурсов и отсутствие внешних угроз приводит к самоуничтожению вида и что мы можем с этим сделать

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
5 из 10

Митохондрии, как говорилось, – тот краеугольный камень, на котором зиждется эволюция сложной жизни, по крайней мере той ее (эукариотической) части, которая хоть как-то интересует подавляющее большинство людей. Митохондрии своей потрясающей энергетической эффективностью делают возможным хранение и саморазвитие гигантских объемов информации внутри каждой эукариотической клетки (Lane N. and Martin W., 2010), что составляет одну из сущностей эволюции мира вообще (БОН: глава XI). Помимо несомненной важности переноса информации между поколениями, как и обязательности ее частичного забывания, с точки зрения адаптационных перспектив организма одинаково важно «помнить» прошлое, «предсказывать» будущее и отвечать вызовам настоящего. Клеточная «память» в этом смысле может быть определена как способность организма получать выгоды из опыта прошлого (Tulving E., 1985). Без избытка энергии не может быть никакой эффективной клеточной «памяти» и, соответственно, способности проактивно отвечать на новые вызовы и угрозы, и это то, что выгодно отличает большинство эукариот от прокариот. Управляя энергией клетки, митохондрии в самом прямом смысле управляют и ее информацией.

На уровне организма связь памяти с потребностью в энергии помогает объяснить, почему наш мозг потребляет так много энергии – до 20 % всей энергии, потребляемой организмом. Кажется странным, что стимуляция мозговой деятельности ведет к сравнительно небольшому увеличению потребления энергии – порядка +10 % от базового уровня мыслительного покоя, включающего в себя поддержание трансмембранной разности потенциалов нейронов, функциональной готовности постсинаптических рецепторов, оборот нейротрансмиттеров, постоянство содержания кальция и других макроэлементов (Howarth C. et al., 2012). Помимо того замечено, что физическая (мышечная) активность заметно улучшает мозговую деятельность (Harris J.et al., 2012), не повышая существенно расход энергии (БОН: глава IV). В нервной ткани подавляющее количество энергии вырабатывается митохондриями и потребляется в синапсах. Как показывают расчеты, работающий мозг вырабатывает приблизительно 30 мкмоль АТФ/г веса в минуту, что не слишком отличается от уровня, генерируемого мышцами ног бегуна (Attwell D. and Laughlin S. B., 2001). И в то же время общая анестезия снижает метаболический индекс головного мозга на 30–70 % (Hudetz A.G., 2012). Хотя сон также связан со снижением уровня метаболизма головного мозга, сон критически необходим для восстановления его оптимума функциональности (Krueger J.M. et al., 2015). Считается общим местом, что головной мозг является чрезвычайно сложной структурой, развившейся в ответ на потребность адаптироваться к восприятию все большего количества информации. Одновременно, и более фундаментально, мозг – также собирающая информацию диссипативная структура, движимая изменениями в окружающей среде. Одним из наиболее интересных аспектов работы головного мозга является то, что и она может быть рассмотрена в свете теории информации и свободной энергии. Здесь мозг определенно не «простая» коммутаторная компьютерная система, а, как предложил Роджер Пенроуз, система, способная использовать квантовые принципы для обработки информации и формирования способности реагировать (Penrose R., 1994). Квантовые теории сознания привели к созданию новой области науки – «квантовой нейрофизики», которая отражает идею, что жизнь в целом привязана к квантовому миру (Tarlaci S. and Pregnolato M., 2016; Al-Khalili J. and McFadden J., 2014).

Есть высокая вероятность того, что производство энергии митохондриями базируется на квантовом туннелировании электронов. Именно туннелирование обеспечивает тесную связь между потоком электронов и созданием протонного градиента через процесс, называемый «настройкой редокса (окислительно-восстановительного потенциала, ОВП)» (Hayashi T. and Stuchebrukhov A. A., 2011; Moser C. C. et al., 2006; de Vries S. et al., 2015). Как известно, наблюдается тесная ассоциация образования активных форм кислорода (свободных радикалов) и интенсивности работы ЭТЦ (Aon M. A. et al., 2008). Функциональный оптимум митохондрий может быть определен как уровень ОВП, при котором они могут максимизировать производство энергии с минимальным образованием АФК. Если ЭТЦ становится переокисленной или перевосстановленной, то АФК в качестве сигнальных молекул инициируют генерацию необходимых ферментов. И в этом случае роль антиоксидантной защиты становится весьма неоднозначной (Cortass S. et al., 2014). Так, комбинация повышенного уровня АФК и повышенного соотношения АДФ/АТФ становится мощным сигналом для увеличения количества митохондрий и/или локализованной выработки компонентов ЭТЦ. Результат включает широкий набор эффектов: от стимуляции роста до локализованной активации так называемых разобщающих белков (UCP, uncouplingproteins), активируемых посредством АФК (Mailloux R. J. and Harper M. E., 2011) (БОН: глава IV). Данное семейство белков выполняет роль клапанов протонного градиента, позволяя «сбрасывать» чрезмерно высокий протонный потенциал без увеличения выработки энергии, то есть разобщая протонный градиент и окислительное фосфорилирование. В этом случае излишне образованная энергия не накапливается в форме высокоэнергетических связей более стабильных, чем АТФ органических соединений (например, жиров и гликогена), а преобразуется в тепло, распыляемое из организма, модулируя при этом, в некоторых случаях, общее состояние организма и/или непосредственно примыкающей к нему окружающей среды.

Особого внимания заслуживает открытие переноса электронов между бактериями как одного вида, так и разных видов, в форме симбиоза по типу бактериальных «нанопроводов», являющихся по сути биологическими проводниками, способными переносить энергию. Этот феномен мог сыграть роль «точечной спайки» при возникновении эукариот, согласно одной из современных теорий (БОН: глава VII).

Аналогичным образом и современные митохондрии умеют формировать структурно-функциональные сети, способные к передаче электрической энергии. В активно функционирующей клетке сеть из слившихся митохондрий является их основным структурным состоянием (Виноградская И. С. и соавт., 2014). Академик Владимир Петрович Скулачев предположил, что такая митохондриальная сеть или ее фрагменты могут действовать как своего рода внутриклеточные «электрокабели» (Skulachev V. P., 2001). Митохондриальное слияние, вызванное умеренным стрессом или сокращенным питанием клетки, ведет к увеличению окислительного фосфорилирования; в то время как слишком сильный стресс, избыток питательных веществ, болезни и воспаление, включая опухоли, вызывают фрагментацию митохондрий, что часто ведет к митофагии (варианту аутофагии для митохондрий) и сокращению окислительного фосфорилирования (Wai T. and Langer T., 2016).

Квантовый контроль митохондрий

Сказанное выше позволяет предположить существование квантовой системы контроля работы митохондрий, в которых функциональные единицы – полиферментные комплексы ЭТЦ и АТФ-синтаза – выполняют роль своего рода транзисторных элементов, где ток протонов сквозь мембрану наружу и обратно через АТФ-синтазу управляется движением электронов по ЭТЦ, которое, в свою очередь, модулируется квантовыми эффектами. Например, недостаточное производство энергии в сочетании с увеличенным ее потреблением выражается в увеличении соотношения АДФ/АТФ, что должно ассоциироваться с увеличением окисления в ЭТЦ, что, в свою очередь, должно изначально вызывать сокращение образования АФК, но коллапс митохондриального мембранного потенциала далее будет снижать квантовую когерентность. Ее снижение приведет к снижению эффективности квантового туннелирования, что далее вызовет увеличение АФК.

Квантовая когерентность является отличительным свойством квантовых объектов и заключается в том, что такие объекты могут в некотором смысле находиться сразу в нескольких состояниях, то есть квантовой суперпозиции.

Следовательно, как ограничение в питании, так и возросшая потребность в энергии (горметический триггер) могут генерировать адаптивный ответ, требующий усиления митохондриальной функции. Если митохондриальный потенциал восстановлен, а митохондриальная масса, сетевая структура и/или эффективность возросла, квантовое туннелирование становится более эффективным и, соответственно, приводит к увеличению уровня АТФ и снижению уровня АФК. Равно если клетка находится в условиях избытка питательных веществ, но не использует достаточно много АТФ, то ЭТЦ может стать перевосстановленной, а митохондрион – гиперполяризованным. В присутствии достаточного количества кислорода это может привести к ускоренному прохождению электронов по ЭТЦ и возросшему образованию свободных радикалов, эффективно тормозящих работу митохондриона. Это указывает на своеобразное квантовое «место наилучшего звучания», где сила электромагнитного поля сбалансирована наилучшим способом. Можно предполагать, что это «место» совпадает с определенным уровнем слияния митохондрий или, по-другому, организованностью митохондриальной сети. Причем профиль сложности этой сети может определяться наличествующей функциональной гетерогенностью митохондрий.

В живых системах квантовые принципы могут наблюдаться довольно часто. Например, процесс абсорбции световой энергии и переноса ее по цепи молекул – фундаментально квантовый процесс, где квантовая запутанность может рассматриваться как форма квантовой суперпозиции (Tamulis A. and Grigalavicius M., 2014). Одним из факторов, определяющих возможность находиться в нескольких квантовых состояниях, то есть когерентность, служит температура среды, отражающая энергию частиц и, соответственно, их способность к взаимодействию. Чем выше энергия, тем больше вероятность разрушения когерентности. Многие годы считалось, что жизнь слишком «теплая и влажная», чтобы поддерживать когерентность. Но появляется все больше данных, что жизнь может использовать термические вибрации для «накачивания» когерентности в большей степени, чем разрушать ее, что выражается в феномене, известном как «квантовое биение». Это явление было обнаружено в бактериальных светопоглощающих комплексах, где представляет собой фактически когерентную суперпозицию состояний электрона.

Естественный отбор и квантовые явления

Если сопоставить все эти рассуждения, можно предположить, что естественный отбор миллиарды лет работал над тем, как сопоставить все возможные квантовые эффекты среагированием на неопределенности окружающей среды. Жизнь вполне может продолжаться без чрезмерного стресса как реакции на вновь возникшую неопределенность. Однако очень вероятно, что ее устойчивость будет снижаться при полном отсутствии возмущающих воздействий, то есть при удалении ключевого фактора, поддерживающего структуру и естественный отбор устойчивых к стрессу систем. Похоже, что при адекватном уровне стресса обеспечивается наиболее эффективное функционирование системы. Основным маркером этого является здоровье митохондрий, играющих ведущую роль в процессе старения.

Некоторые данные из литературы указывают, что продолжительность жизни человека может быть запрограммирована на уровне около 125 лет с пределом бессимптомного старения на уровне 95 лет (Le Bourg E., 2012; Robertson H. T. and Allison D. B., 2012; Weon B. M., 2015). Показатель старения – величина изменяемая, что, в частности, ведет к нынешней ситуации «ускоренного старения» в среде, провоцирующей ожирение (Kaeberlin M. et al., 2015; Lane N., 2003; Salminen A. et al., 2008, Franceschi C. et al., 2000). В то же время это открывает возможности для «здорового старения».

Достаточно давно замечено, что ограничение поступления калорий в организм, предположительно подавляющее репродуктивность, но увеличивающее долголетие, в результате улучшает соматическое функционирование и угнетает чрезмерное воспаление (Speakman J. R. and Mitchell S. E., 2011). Речь, скорее, идет не об улучшении соматического функционирования самого по себе, а о вызванном за счет сниженного поступления энергии замедлении старения. По сути это вторичный эффект увеличенного уровня аутофагии и апоптоза, отвлекающих ресурсы, предназначавшиеся для поддержки репродукции (Adler M. I. and Bonduriansky R., 2014). Но при запрограммированной продолжительности жизни за период бессимптомного старения могут отвечать открытые в последние годы эпигенетические механизмы (Baker D. J. et al., 2016; Lowe D., 2016). В этих механизмах митохондрион участвует самым непосредственным образом: помимо непосредственного «контроля смерти» через апоптоз, он также контролирует эпигенетическую наследственность, как описывалось в предыдущей главе, через некоторые промежуточные продукты цикла Кребса (Wallace D. C. and Fan W., 2010; Salminen A. et al., 2014). Уровень воспаления в организме, в свою очередь, модулирует работу «карусели» этого цикла, повышая, в частности, уровень АФК (West A. P. et al., 2011). Замечено, что чем относительно более долгоживущим является вид, тем эффективнее его ЭТЦ, что выражается в том числе в меньшем образовании АФК, требующим меньшего вовлечения механизмов антиоксидантной защиты и репарации ДНК (Barja G., 2013). Возрастное ухудшение функций митохондрий имеет отношение к механизму так называемого храповика Мюллера.

Храповик Мюллера (или Меллера, Muller’sratchet) – необратимое накопление вредных мутаций при отсутствии рекомбинации генов (например, в форме полового размножения), приводящее к постепенной потере приспособленности и гибели популяции. Эффект заметнее всего проявляется в небольших популяциях, где особенно заметен генетический дрейф. Митохондрии в принципе можно считать такой небольшой бесполой популяцией.

Этот механизм позволяет накапливаться мутациям в митохондриальной ДНК и постепенно тормозит экспрессию генов, определяющих функционирование митохондрий. В то же время он увеличивает экспрессию генов, контролирующих врожденный иммунитет (Tower J., 2015). Экспериментальные свидетельства подтверждают явное нарастание с возрастом гетероплазмии (по сути – разнообразия) в митохондриальной ДНК соматических клеток (Li M. et al., 2015). Это подтверждает самые тесные взаимоотношения между функционированием митохондрий, квантовой эффективностью и старением.

Митохондрии и старение

Почти 10 лет назад, в 2013-м, были сформулированы 9 признаков старения, практически общепризнанные к настоящему времени (Carlos López-Otín et al., 2013):

1) нестабильность генома;

2) укорочение теломер;

3) эпигенетические изменения;

4) нарушение протеостаза;

5) дерегуляция восприятия питательных веществ;

6) митохондриальная дисфункция;

7) клеточное старение;

8) истощение пула стволовых клеток;

9) изменение межклеточного взаимодействия.

Александр Фединцев и Алексей Москалев (Fedintsev А. and Moskalev А., 2020) называют дополнительным признаком старения накопление случайных изменений межклеточной среды, обозначаемую как неферментативная модификация долгоживущих молекул межклеточного матрикса (10).

Разумеется, все эти признаки тем или иным образом взаимосвязаны. Легко можно заметить, что большинство этих признаков, если не все, в той или иной мере связаны с работой митохондрий (хотя сама по себе дисфункция митохондрий не ведет автоматически к проявлению всех остальных признаков старения, то есть, собственно, к самому старению).

Джеймс Чапмен, Эдвард Филдер и Жоан Пассос (James Chapman, Edward Fielder and Joao F. Passos, 2020) считают ключевой в развитии старения именно связку дисфункции митохондрий и клеточного старения (сенесценции). Сенесцентные («резко состарившиеся») клетки характеризуются не только полной остановкой клеточного деления (что было бы достаточно естественно для полностью дифференцировавшихся клеток), но и переходом в так называемое SASP состояние (Senescence Associated Secretory Phenotype – секреторный фенотип, ассоциированный со старением). Сенесцентные клетки секретируют вовне огромное количество провоспалительных цитокинов, хемокинов, протеаз и факторов роста, что оказывает негативное влияние на их непосредственное окружение и даже может отражаться на состоянии достаточно удаленных органов и тканей. Это может вести как к возникновению воспалительных, так и опухолевых процессов, и через это, к развитию типичных возрастных заболеваний. В животных моделях своевременное удаление сенесцентных клеток из определенных органов и тканей замедляет или даже останавливает прогресс таких возрастных патологий. На сегодняшний день или в клинических, или в модельных исследованиях связь накопления сенесцентных клеток с развитием патологии показана для порядка двух десятков возрастных заболеваний – от атеросклероза и аллопеции до остеопороза и саркопении.

Нужно отметить, что метаболически сенесцентные клетки даже более активны, чем нормальные, они поглощают больше кислорода, быстрее окисляют углеводы и липиды, производят больше энергии и АФК. В то же время их уровень антиоксидантной защиты и вообще устойчивости к апоптозу весьма высок. В каком-то смысле их можно назвать неубиваемыми «зомби-клетками», и соседство с ними весьма токсично и также может вести к «зомбированию». Основной версией возникновения сенесцентных клеток считаются различного рода стрессовые для клетки ситуации, например оксидативный стресс, активация внутренних онкогенов или модификации хроматина (Kuilman T., 2010). Можно даже предполагать, что это неудачная или незаконченная попытка спонтанного «беспричинного» самоубийства клетки, обусловленного, в частности, необходимостью гарантированного самоуничтожения в случае начала ракового[4] перерождения. Возможно, это может быть судьбой не собственно апоптической клетки, а клетки-чистильщика, фагоцита-скэвенджера, пришедшей «подчищать» место клеточного самоубийства (БОН: глава XII). Дело в том, для сенесцентных клеток характерна высокая экспрессия на поверхности универсальных рецепторов CD36 (Saitu M. et al., 2018), а в обычных условиях таким свойством обладают в том числе многие фагоциты-чистильщики. Возможно, какие-то события на месте заставляют фагоцит сначала «зомбироваться» самому, а далее «зомбировать» свое окружение, заставляя соседние клетки повторять свой SASP фенотип, что могло бы напоминать прионное инфицирование (когда прионы – извращенные белки-укладчики – заставляют вступившие с ними в контакт другие восприимчивые белки так же извращенно укладываться и укладывать других БОН: глава VI).

В любом случае, как считается, сенесцентное состояние определенно предотвращает опухолевое развитие (Campisi J., 2001). То есть для целого организма лучше сенесцентное зомби, чем раковый годзилла-оборотень. Оба монстра «не боятся смерти», ни своей, ни чужой, и поэтому, как часто бывает, именно такие «не боящиеся смерти» элементы представляют особую опасность для «общественного порядка».

Есть предположение, что преходящее (временное) сенесцентное состояние, когда сенесцентные клетки в итоге тем или иным способом все-таки удаляются из организма, играет положительную роль в ряде острых процессов: например, заживления ран, восстановления ткани и в ходе эмбрионального развития (Munoz-Espin D., 2013; Demaria M., 2014) – своеобразное повторение сюжета «Отряда самоубийц» (Дэвид Эйер, 2016), когда «отмороженные» антисоциальные элементы в силу своей разрушительной эффективности были привлечены к выполнению задач «спасения мира», а потом уничтожены или возвращены в места постоянной изоляции. Сохраняющаяся же персистенция сенесцентных клеток неизбежно ведет к развитию хронического воспаления, которое само по себе давно считается важнейшей причиной нарушения в работе митохондрий, ведущих к ускорению старения. Сочетание хронического воспаления и старения вообще уже многими исследователями считается единым процессом – inflammaging («староспаление»). Подавление хронического воспаления, соответственно, может вести к замедлению старения. Лучшим способом добиться этого может стать применение горметических факторов, таких, например, как тренировки (БОН: глава IV) и удаление факторов, стимулирующих воспаление, таких, как ожирение. Умеренное (горметическое) стрессовое воздействие на митохондрии ведет к ответной адаптивной реакции, улучшающей их эффективность (Tapia P. C., 2006). Тем не менее воспаление, развивающееся в ответ на инфекцию и инициирующее восстановление нанесенных инфекцией повреждений, использует для этой задачи митохондрии, изменяя их функционирование на усиленную выработку АФК (WestA. P. et al., 2011). Хотя адекватный воспалительный ответ критически важен для выживания, он может быстро ускорять процесс старения, если становится хроническим. Таким образом, оптимальное здоровье не должно рассматриваться просто как отсутствие заболеваний, но, скорее, как постоянное формирование все более надежной системы, все более способной поддерживать гомеостаз перед лицом различных угроз и вызовов. Предполагается, что гормезис отбирает наиболее эффективные ЭТЦ, которые замедляют неизбежную петлю положительной обратной связи: воспаление ведет к митохондриальной дисфункции, митохондриальная дисфункция стимулирует воспаление.

Возможная квантовая механика эволюции

Эволюция также производит отрицательный отбор неэффективных ЭТЦ. Возникшие на основе ЭТЦ врожденная иммунная система и программируемая клеточная смерть – это древнейшие механизмы защиты, возникшие еще у прокариот (Allocat N. et al., 2015; Marraffini L. A., 2015; Heussler G. E., 2015). Постоянная тонкая поднастройка ЭТЦ, необходимая для выживания видов, следовательно, также должна быть очень древним механизмом. Очень вероятно, что она построена на некоторых квантовых эффектах, а для современных теплокровных животных включает основанное на них регулирование температуры.

КВАНТОВЫЕ ЭФФЕКТЫ В БИОЛОГИИ (из Алистер Нанн, Джефри Гай и Джимми Белл, 2018)

Живые системы поглощают энергию с целью сохранения и использования информации. Эффективное применение свободной энергии дает возможность для создания высокоупорядоченного состояния, которое может становиться более эффективным и более приспособленным в рамках естественного отбора. Живые системы экспортируют неупорядоченность, выполняя тем самым второе начало термодинамики.

(1) Естественный отбор возникает между макромолекулами, настроенными на использование квантовых эффектов, основанных на универсальных механизмах переноса зарядов в живой материи (Vattay G. et al., 2014, 2015).

(2) Базовые квантовые эффекты, такие как спутанность и туннелирование, – одна из возможных причин возникновения и поддержания жизни (Tamulis A. and Grigalavicius M., 2011, 2014; Trixler F., 2013).

(3) Первые объективные свидетельства квантовых эффектов в живых системах получены для фотосинтеза, использующего туннелирование электронов (Engel G. S. et al., 2007; Fassioli F. et al., 2014).

(4) Туннелирование электронов служит одним из механизмов их переноса в ЭТЦ (Hayashi T. and Stuchebrukhov A. A., 2011; Moser C. C. Et al., 2006; de Vries S. et al., 2015). Дополнительным свидетельством подобных переносов в ЭТЦ при дыхании и фотосинтезе является образование ферментативных суперкомплексов, обнаруживаемых во всех порядках организмов (Dudkina N. V. et al., 2015; Lapuente-Brun E. et al., 2013; Melo A. N. P. And Teixeira M., 2016).

(5) В живых системах обнаружен феномен квантового биения, в частности в системе фотосинтеза (Engel G. S. et al., 2007; Lim J. et al., 2015; Craddock T. J. et al., 2014).

(6) Бактерии в колониях и биопленках способны делиться электронами. Перенос электронов возможен как между бактериями одного вида, так и разных, и, вероятно, на сравнительно большие расстояния. Подобный перенос между археями и бактериями мог сыграть роль в возникновении и развитии эукариот (Winkler J. R. and Gray H. B., 2014; McGlinn et al., 2015; Pfeffer C. et al., 2012; Wegener G. et al., 2015).

(7) Ионные каналы играют ключевую роль в функционировании головного мозга. Проводимость ионных каналов может быть описана в терминах квантовой механики (Moradi N., 2015; Summhammer J., 2012).

(8) Квантовая теория обоняния (Gane S. et al., 2013, БОН: глава XIII).

Алистер Нанн, Джефри Гай и Джимми Белл (2016) выстраивают следующую последовательность рассуждений. Митохондриальный потенциал может управлять когерентностью и облегчать квантовое туннелирование электронов (а также, возможно, контролировать другие функции, связанные с когерентностью, такими как работа ферментов или состояние ионных каналов). Это может быть двухфазный процесс, сначала увеличивающий эффективность митохондрий, когда уровень АТФ растет, уровень АФК падает. Но при чрезмерной эффективности митохондрий для определенного состояния клетки процесс выработки АТФ должен тормозиться с увеличением избытка АФК. Термодинамически это может изначально способствовать выживанию отдельной клетки, далее инициируется репликация, и, если необходимо, вызывается клеточная смерть. Этот процесс может считаться горметическим. ЭТЦ в принципе может участвовать в передаче сигнала с помощью АФК и в других системах. Например, механизм свободнорадикальных пар с возникновением квантовой запутанности электронов, источником которых является ЭТЦ, обеспечивает навигационную способность птиц (Zhang Y. et al., 2015). Исходя из этого можно принять, что любой сдвиг в потоке электронов и/или протонов, или через изменение входного потока электронов, или изменение доступности электронов, или формы клеток, или через повреждение клетки, может очень быстро генерировать сигнал, который немедленно изменяет функционирование митохондрий. Эффекты митохондриальной динамики могут быть рассмотрены в новом свете, если принять возможным, что слияние митохондрий может усиливать квантовую сигнальную систему в целой клетке. При этом система может быть изменена и в обратную сторону расщеплением конгломерата митохондрий.

На страницу:
5 из 10