
Полная версия
Гравитация и эфир
Поэтому та чисто энергетическая модель Большого Взрыва современных физиков, когда у них барионы образуются через какие-то доли секунды после Большого Взрыва, не выдерживает никакой критики. Сам же этот их «энергетический путь» – это чисто идеалистическое (фантазийное) направление развития физики. Оно должно быть благоразумно завершено физиками и «прямо сейчас».
Теперь скажем о некоторых непонятках физиков, когда они говорят о «реликтовых гравитационных волнах». Наша модель Вселенной снимает эту проблему, так сказать – в зародыше. Дело в том, что в их модели гравитация распространяется со скоростью света, то есть с такой же скоростью, с какой распространяются, скажем, реликтовые фотоны. Может быть отсюда у физиков пошло-поехало аналогичное название, приклеенное ими и к гравитационному миру вещества. Но у нас гравитация быстрее света в

«Реликтовыми» же в нашей модели могут ещё как-то считаться только те «волны» (гравитационные излучения), которые могли бы приходить к нам «сейчас» от Метагалактик, расположенных на противоположной стороне эфирной окружности Большой Вселенной, то есть от очень сильно удалённых Метагалактик («Вселенных» физиков). Возраст этих излучений может действительно исчисляться многими миллиардами лет. В этом смысле можно сказать вполне определённо о том, что поскольку, находясь на любой отметке времени от начала Большого Взрыва, мы пролетели, замедляясь, значительно меньшее расстояние, чем оттуда же успевала нас всегда прошивать тогдашняя гравитация, со всеми её тогдашними неоднородностями, то теперь мы точно могли бы видеть только те гравитационные «реликтовые» волны, которые приходили бы к нам от какого-то диаметрально-противоположного состояния этих диаметрально-противоположных к нам Метагалактик.
Однако эти далёкие «гравитационные волны» обязаны иметь ярко выраженную неизотропность их прихода (они приходят только с одного ярко выраженного направления противоположного края Большой Вселенной). Следовательно, по этой неизотропности их можно не только отличить от других «волн», но они могут быть полезны нам в смысле поставщиков реального излучения, которое могло бы, при тщательной обработке, помочь в уточнении структуры Большой Вселенной. Всё это надо просто элементарно просчитывать. Эти расчёты, а также множество подобных, вполне могут выполнить школьники, которым почему-то захочется проверить нашу модель. У нас на подобные расчёты просто нет времени.
Гравитационные же излучения («волны» физиков) от Метагалактик, расположенных где-то «невдалеке» от нас по «нашей» дуге расширяющейся окружности Скорлупы Большой Вселенной, обязательно прошивают нас «сейчас» и во множестве. Это точно. И их мы обязаны не только видеть, но изучать всеми доступными нам способами.
Было бы желание физиков.
Хотелось бы сказать и ещё об одной «детальке» в гипотезах физиков о пульсирующей Вселенной. Когда они рассматривают вариант с первоначально сжимающейся Вселенной (у нас она тоже первоначально сжимается), то у них стадия последующего расширения происходит в результате «отскока» («отскока» от точки минимального сжатия). При этом причину этого отскока они представляют смутно. Мы же называем точную причину разлёта только что родившегося в Большой Вселенной электромагнетизма: это инерционный удар в результате резко возросшей инерционности частиц. Что же касается не первоначального сжатия, но любого последующего сжатия пульсирующей Большой Вселенной, то там уже нужно говорить не об отскоке, но просто о прохождении сжимающимся эфиром области «сингулярности» по инерции (с некоторой естественной закруткой-вращением сжимающихся масс в «малую» Эфирку и последующим «разбрызгиванием» по инерции этого сжатого вещества эфира). То есть там работает не столько непонятный «отскок», сколько первый закон Ньютона об инерции, который физические математики не только подзабыли, но, похоже, не изучали на уровне физического понимания процессов. Ещё раз убеждаешься в том, что математиков надо держать в физике под сильным контролем физиков и философов.
Кстати, сама «Инфляционная теория» физиков также страдает непониманием физиками самой причины расширения Вселенной, каковой, безусловно, является «простая» инерция разлетающегося вещества эфира. Но у физиков, далёких пока от простого «механического» пути развития Вселенной (какой рассматриваем мы в нашей модели) причиной инфляции служат всякие («бумажные» – скажем мы) новенькие поля, типа, например, поля Энглера-Браута-Хиггса или так называемого поля – «инфлантон». Такие поля тянут-потянут материю Вселенной (ещё со времён Маха). Мы хорошо понимаем физиков. Ведь им надо было как-то замазывать философскую дыру начального незнания ими причин расширения Вселенной. Хотя бы чем-то: «Вот вам ещё одно белое пятно; закрасим как-нибудь потом, лет через 100».
И наконец, в данной главе мы не можем серьёзно не покритиковать физиков по поводу их представления о «реликтовом излучении». Физики верно представляют себе реликтовое излучение – как почти изотропные потоки «холодных» фотонов, приходящие к нам со всех сторон окружающего нас пространства Вселенной. Однако при этом они не знают (не учитывают) четырёх основополагающих фактов:
1) Физики до сих пор официально считают фотон «точечной» частицей, несмотря на то, что уже есть множество опытных данных о том, что фотон – это, во-первых, протяжённая в пространстве частица, во-вторых, она составная, то есть состоит, следовательно, из каких-то элементарных частиц;
2) Физики плохо представляют себе, каким (именно колебательным) процессом является фотон-частица;
3) Физики гоняют по пространству свои фотоны – фактически в пустоте, хотя мы, например, настоятельно им рекомендуем гонять не только фотоны, но и вообще все любые частицы – только в электромагнитном эфире, погружённом, в свою очередь, в гравитационный «эфир-вакуум»;
4) Физики так и не догадались о действительных источниках реликтовых фотонов.
Этот материал о фотонах можно было бы разместить ещё в главе «Неразгаданная тайна фотона», из 2-го тома Философии. Но там на это у нас не хватило места в книге 2-го тома, и поэтому пришлось прервать главу на одном из самых интересных мест о физике фотонов-частиц.
Итак, физики догадываются о том, что они «видят» не больше, скажем, 1 % всего действительного объёма Большой Вселенной. Мы же не просто догадываемся об этом же, но приводим конкретную Модель Большой Вселенной, достойную, как нам кажется, серьёзного обсуждения. Но вот насчёт робких предположений физиков о том, что современная Вселенная может расшириться ещё на порядок, мы должны с ними поспорить. Наша модель «замедленного ускорения» говорит о том, что из современного состояния, когда радиус расширения Вселенной достиг порядка


Когда физики говорят о том, что Вселенная будет расширяться ещё, по крайней мере, на порядок, то мы видим, что они относятся к этому серьёзному вопросу безалаберно-пофигистски: «Да пусть расширяется, нам что – от этого хуже станет?» Хорошо, что уже сегодня расширившаяся Вселенная достигла у физиков «плоского» (не кривого) состояния. Поэтому они, даже с некоторым облегчением, уже сами как бы говорят общей теории относительности (ОТО) Эйнштейна «большое спасибо» за то, что та им верно послужила на их начальном этапе исследования расширения Вселенной от «точки» до сегодняшней «плоскости». И теперь они фактически попали, наконец, «в прямое пространство»: «Здравствуй, Евклид (Эвклид)!» (то есть – прощай Эйнштейн, но здравствуй Эвклид; уже хорошо, с Эвклидом-то мы попадаем в привычный нам с пелёнок мир пространств, времён и вещей).
И действительно, когда мы со школьниками отмечаем какую-нибудь понравившуюся нам точку на гигантском расширяющемся «резиновом» Шаре Вселенной физиков, а затем берём «микроскоп» и увеличиваем эту «точку-область-заплатку» резиновой оболочки Шарика, то видим, что эта область-заплатка-резинка имеет вполне ощутимую «микроскопом» толщину, а эта область-толщина видится нам нисколько не искривлённой, но весь её «объём» мы видим точно таким же, как если бы он лежал у нас на каком-то плоском столе, полностью выпрямленный плоскостью этого стола. Слушая объяснения физиков о «безграничной, но замкнутой Вселенной», школьник начинает понимать, что он, вместе с пока «маленькой» видимой физиками частью гигантской Большой Вселенной, находится внутри малой области вырезанной им «резиновой» заплатки. И поэтому на него, на школьника, налетают со всех сторон этого «видимого» объёма «реликтовые фотоны» физиков. Школьник начинает понимать, что действительно: «сверху» и «снизу» заплатки этих реликтовых фотонов должно быть явно меньше, чем с остальных «боков» гигантских просторов Шарика Большой Вселенной, куда физики пока не заглядывали. Более того, исследуя уже видимую физиками неизотропность этого излучения, те говорят и себе, и школьнику о том, что, мол, по этой неизотропности можно будет потом догадываться о некоторой структуре Большой Вселенной. Мы тоже обеими руками поддерживаем физиков в этом их справедливом стремлении. Правда, у нас Большая Вселенная – это не столько именно «плоско-непрерывная» надувная резинка, но это Кокон из паутинок. И этот Кокон, пожалуй, может не позволить физикам «реликтить» так, как им хочется на безбрежной резинке Шарика. То есть мы накладываем на «реликтовое излучение» явно более жёсткие требования, чем физики. Это – первое.
И уже это «первое» могло бы подсказать физикам, когда бы те захотели, что неизотропность реликтового излучения гораздо более сложна и более структурирована, чем думают о том физики. То есть у них, с их непрерывно-безбрежной резинкой, «боковые фотоны» приходят изотропными со всех боков (со всех боковых направлений в 360°). Но у нас есть «два бока» – фактически такие же, как у физиков (это те, где Жгут Метагалактики уходит по дуге Большой Вселенной, включая там на этом пути в себя тысячи Метагалактик – как видимых «Вселенных» физиков). Но есть у нас два других «бока», толщина которых фактически равна «высоте» Жгута, то есть равна (в модели Шарика физиков) толщине плоского пространства резинки-заплатки Шарика.
Более того, если дать трём типам этих «толщин» свои какие-нибудь названия, например, «лево-право» по боковой толщине Жгута, «верх-низ» по «высоте-радиусу» Жгута относительно центра Большого Взрыва, а также «вперёд-назад» вдоль «резинки» большой окружности Жгута, натянутого вдоль окружности Большой Вселенной, то наверняка можно будет обнаружить (когда-то «потом») все эти три типа неизотропностей реликтового излучения, что «покажет» физикам ориентацию Нашей Метагалактики в Большой Вселенной. Это – второе замечание.
И ещё более того. Мы уверены в том, что направление толщины Жгута «верх-низ» обязано быть тоньше, чем направление «лево-право». Это следует из того, что даже при том, что где-то «рядом» с «Нашим Жгутом» в направлении «лево-право» лежит на Большом Шарике Большой Вселенной такой же Жгут, а ещё далее за ним в направлениях «лево-право» от нас – множество подобных Жгутов по всей сфере Шарика, то по касательной плоскости к поверхности Шара Большой Вселенной гравитация растягивает каждый Жгут в меньшей степени (там, в направлениях «по касательной», уже нет других эфиров Вселенной), нежели она растягивает-сплющивает каждый Жгут в направлении «верх-низ», откуда («снизу») на эфир Жгута «смотрит» вся масса эфира Большой Вселенной. Хотя, с другой стороны, если соседние Жгуты «слева» и «справа» находятся достаточно «близко» к Нашему Жгуту, то они будут заметно растягивать в эти стороны наш эфир. Всё это надо просчитывать. А эффективность этого расчёта будет только тогда высокой, когда мы своими «гравитационными приёмниками» (которые непременно изобретём) «просветим» дальний космос по радиусу его удалённости от нас, на 1–2 порядка превышающему размеры Нашей Метагалактики («видимой Вселенной» физиков).
То есть когда бы физики захотели, то они бы уже «сегодня», с помощью школьной «арифметики», смогли бы определить абсолютно точную ориентацию Нашей Метагалактики в теле Большой Вселенной. И они бы смогли это сделать, исследуя более тщательно хотя бы, для начала, то же – «реликтовое излучение», не говоря уже о «просвечивании» дальнего космоса гравитационным методом.
Но сейчас, в данной главе, мы прервём разговор о «реликтовых фотонах» для того, чтобы перенести его в конец следующей главы. Там мы сначала подробно рассмотрим, наконец, физику процесса излучения фотона атомом. А уже из этой физики выведем причины, условия, источники и места расположения этих источников излучения «реликтовых фотонов» во Вселенной.
* * *В качестве лирического отступления от темы главы хотелось бы (и в этой главе – тоже) поговорить о «материализме» и «идеализме» учёных, действовавших во все исторические времена. Тут, пожалуй, стоит высказать некоторую примиренческую, хотя и крамольную, мысль: все серьёзные учёные (а тем более – великие среди этих серьёзных) – всегда материалисты. Даже те, кого дотошные философы норовят записывать в лагерь идеалистов. Даже те, которые несут откровенную фигню про некое «абсолютное ничто» или про «безмассовые частицы». Ведь если копнуть глубже мысли любого из них, то оказывается, что все они на самом деле говорят об одном и том же чисто физическом процессе – о «движении вещества в пространстве». Правда, не каждый из них сознаёт, что он в каком-то данном контексте своих рассуждений говорит об этом. Например, некоторые чуть ли не намеренно, размышляя о «духе» (в особенности – «старинные» учёные), говорят о «духовной субстанции», о Боге, о «чистом мышлении» и так далее, а при этом философы непременно приклеивают к ним марку-штамп учёного-идеалиста (включая, естественно, и штамп философа-идеалиста). Более того, ярые марксисты-ленинцы припечатывают к идеализму всякого, кто согрешил в признании им существования Бога.
Глядя с высоты 21-го века на весь этот многовековой театр, приходишь к мысли: с одной стороны – об элементарной недоговорённости одних людей с другими людьми; с другой стороны – о естественно-малом знании прежних исследователей о Природе; но о преступно-малом знании о Ней же современных служителей науки. Когда учёный-естественник или даже философ говорит о «духовной субстанции» и причисляет её к чисто идеалистическим понятиям, то так и хочется спросить у них: «А есть ли “духовная субстанция” у кирпича?» Господа «недоговоренцы», любая «духовная субстанция» – это, как ни крути, продукт мыслящего Разума, то есть по-другому – это просто мысль. Но мысль серьёзного учёного всегда бывает – «о чём-то», причём – о чём-то таком, что можно и нужно исследовать, то есть всё равно – о чём-то материальном. Конечно, попадаются и несерьёзные учёные. Это те, кто мыслит о «мысли-понятии», стремясь превратить это понятие в вещество, и превратить прямо сейчас. Как это им удаётся, знают только они – фантазёры.
В качестве примера недоговорённости-недосказанности философов приведём их вековую полемику о философских позициях двух великих учёных 17-го века – Рене Декарта (1596–1650) и Исаака Ньютона (1643–1727).
Ну и что же, что Декарт само мышление определял как «мыслящую вещь», то есть как духовную субстанцию. Ну и что же, что эта субстанция у него не нуждалась для своего существования ни в какой из материальных вещей. Во «Введении» к «Физике» (в первом томе нашей философии) мы уже говорили о том, что отличительной особенностью любой «материальной вещи» Декарт считал её протяжённость в пространстве (протяжённость в длину, ширину и глубину). Духовная же субстанция для Декарта не нуждается в материальных признаках. То есть «мыслящая вещь» (мы скажем – мысль) и физическое тело для Декарта – могут существовать независимо друг от друга. И поэтому философы с тех времён и до этих (наших) талдычат о некоем «дуализме», основы которого де заложил Декарт: он признаёт, мол, с одной стороны – материальный принцип – как не зависящее от сознания существование материи; с другой стороны – духовный принцип – как не зависящее от материи сознание. Но на самом деле, если сегодня серьёзно подумать, то у кирпича (материального) не может быть никакой мысли (не может быть духовного), тогда как у мысли (у духовного) обязательно должен быть не только свой «материальный носитель» (как материальное поле), но и свой «материальный излучатель» (как, например, человек).
Всё дело в том, что во времена Декарта люди пока ещё не знали о мире, в котором они жили, слишком многого. Им тогда страшно было подумать о том, что мысль (дух) может быть материальной. Отсюда и пошли-поехали всякие философские «дуализмы» и идеализмы. Любой «идеализм» серьёзного учёного – это просто его очередное «пока незнание» о Природе.
Критики-философы говорят также и о том, что, например, в противоположность Декарту, воззрения Ньютона о том, что «при изучении природы надо от наблюдаемых явлений восходить к установлению причин, коими они объясняются, шли в разрез с декартовым учением, согласно которому надо проницательностью ума вперёд установить первопричины и из них выводить следствия». Но здесь мы опять видим великую путаницу – как просто продолжающуюся недоговорённость одних с другими. Господа философы, в цитируемом нами в данном абзаце замечании-утверждении говорится (если серьёзно подумать) лишь о разных методах познания двух великих учёных. Более того, если ещё более серьёзно подумать, то эти их два метода на самом деле сольются во всё тот же единый метод: долгое думание великого учёного об устройстве мира.
Сравнивая Декарта и Ньютона, говорят, например, о том, что Декарт, мысля о зарождении Солнечной системы, рассуждал о неких вихрях – как о прозрачных потоках среды. «Эти вихри, подхватывая более крупные, видимые частицы обычного вещества, формируют круговороты небесных тел. Они лепят их, вращают и несут по орбитам… Система Декарта была первой попыткой механически описать происхождение планетной системы, не прибегая ни к чуду, ни к божественному промыслу… Над идеями Декарта размышлял молодой Ньютон. Он показал, что околоземный вихрь должен терять своё движение, что его массивный напор оказал бы воздействие на земные тела не только в направлении сверху вниз (сносил бы их в сторону, не совпадающую с этим направлением, к центру Земли). Главное же – вихри Декарта оказалось невозможным согласовать с законами Кеплера: планеты в мире вихрей не могли бы устойчиво двигаться по эллипсам, и скорости планет должны были быть иными».
Ньютон поправил Декарта, думая о природе закона всемирного тяготения. Но так и должно быть: ведь Ньютон мыслил об этом тогда (с 1664 по 1667 годы), когда Декарт уже умер (1650). Более поздняя наука знала о природе вещей уже больше, чем она знала при жизни Декарта. Ньютон был «буквоедом», то есть супер-дотошным человеком во всех своих изысканиях. С дотошностью Ньютона из великих физиков может сравниться разве что Макс Планк.
«Товарищи учёные, доценты с кандидатами», мы, например, в своей философии, а конкретнее – в данной главе, продолжая может быть именно Декарта, говорим тоже о «гравитационных вихрях», сделанных Природой из гравитационных квантов-частиц. Эти «прозрачные» гравитационные вихри закручивают «гравитационные частицы» в гигантский вихрь при зарождении Вселенной; далее они закручивают области Метагалактик, состоящие уже из электромагнитных квантов-частиц; далее они помогают закручивать (внутри каждой Метагалактики) галактики; далее, не столько именно «вихри», сколько гравитационные поля (тоже – «прозрачные») помогают закручивать звёздные системы, включая Солнечную (здравствуй, Декарт!); и наконец, они, поля, как реальные воплощения «прозрачных» вихрей Декарта, закручивают электромагнитные частицы в вещество зарождающихся планет… Через 400 лет после Декарта мы фактически примиряем позиции Декарта и Ньютона об одном и том же. Но, правда, Ньютон говорит об этом более тщательно, более продуманно, причём настолько более продуманно, что даже современные физики никак не могут до конца допетрить о том, что им хотел сказать Ньютон своим законом всемирного тяготения.
Мы ещё раз видим: все великие учёные потому и великие, что в главном они никогда не ошибаются. Просто, неблагодарные потомки плохо их умеют понимать и ещё более развивать их какие-то еле заметные намёки, всегда верные по своей философии.
И ещё об одном в этой же главе.
Почему вообще, начиная с конца 19-го века и затем в течение всего 20-го, физикам стала нужна теория относительности? Почему она не была нужна, например, Ньютону? Здесь дело даже не в том, что физики, в отличие от Ньютона, принялись изучать быстрые процессы, скорость протекания которых стала сравнимой со скоростью света. Ведь даже Максвеллу, который фактически начал уже изучать быстрые процессы, распространяющиеся именно со скоростью света, эта теория (относительности) была пока ещё не нужна. Дело – в другом. И Ньютон, и Максвелл рассматривали свои процессы относительно физического вакуума. И совсем не важно, как этот вакуум именовался для них и для многих других физиков. Для Ньютона он именовался «вещественным пространством»; для Максвелла он именовался «эфиром». Но и тот и другой, повинуясь элементарному здравому смыслу, мыслили свою физику процессов, происходящих в каком-то гигантском пространстве. И они чётко понимали, что это гигантское пространство, пусть даже оно само как-то движется в ещё более гигантском, но его уже вполне можно считать неподвижным для всех тех процессов, с которыми учёные не только уже работали, но с которыми собирались работать в будущем. И они не пугались этого гигантского пространства, но всегда мысленно «пришпиливали» все свои процессы именно к нему, неподвижному. И поэтому у них никогда не возникало мысли о каких-то абсолютно не нужных им «инерциальных системах», так надолго потом замусоривших всю физику.
И действительно, хоть и велика скорость света, но даже её физикам удалось измерить уже в 19-ом веке. То есть тогдашние физики, измеряя эту скорость, мысленно представляли себе, что свет распространяется относительно вещественного пространства, как пространства, заполненного каким-то веществом, хотя пока и не известным им. Ведь если мыслить совсем уже по-простецки, то первую «теорию относительности» придумал ещё Галилей, мысленно рассуждавший о своих кораблях, движущихся равномерно и прямолинейно, и о процессах, происходящих при этом на этих кораблях, относительно кораблей и относительно неподвижного берега.
Ну и что же, что скорость света велика по отношению к кораблям. Но мысль думающего человека всегда будет опережать свет на много порядков, уже «поджидая» этот «черепаший» свет на той точке, куда он докандыбает через миллиарды лет, испущенный источником в направление этой контрольной точки. Все возможные траектории света вполне умещаются в одной голове думающего ребёнка, который может мгновенно увеличивать или уменьшать масштабы картинок пространства, где бегает, быстро или медленно (в зависимости от масштаба картинки), этот исследуемый ребёнком свет.
Циолковский, например, думая о межзвёздных полётах, вполне обходился «пустым» пространством и самой элементарной математикой школьного учителя. Ньютон же «запросто» рассчитывал траекторию луча света, отклоняемого Солнцем. Соображалка думающего человека легко охватывает любую геометрию любого самого быстрого процесса. Более того: она эту геометрию запросто рассчитывает с помощью чуть ли не арифметики, с минимальной примесью школьной алгебры.