bannerbanner
Старение и антиэйджинг: медико-биологические подходы к увеличению продолжительности жизни и активному долголетию
Старение и антиэйджинг: медико-биологические подходы к увеличению продолжительности жизни и активному долголетию

Полная версия

Старение и антиэйджинг: медико-биологические подходы к увеличению продолжительности жизни и активному долголетию

Язык: Русский
Год издания: 2024
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
11 из 12

Долгоживущие организмы имеют большие затраты (иногда более длительный метаболизм), что приводит к более медленному накоплению повреждений. Для борьбы с риском, который представляют собой поврежденные клетки, организм создал систему механизмов, которые часто включают второй ряд компромиссов. Эпигенетические изменения в СК за время жизни накапливаются. Механизм накопления эпигенетических изменений клетки уже известен:

1) со временем в клетке медленно теряются маркеры репрессированного хроматина, что может быть связано с дифференцировкой клеток в организме;

2) происходит утрата маркеров репрессии, которая рано или поздно приводит к дерепрессии дремлющих транспозонов и, соответственно, к росту количества вызванных ими повреждений ДНК;

3) отмечается активация клеточных систем репарации ДНК, которые участвуют в восстановлении ДНК, вызывают и несанкционированные рекомбинации в теломерах;

4) рекомбиназы транспозонов непосредственно инициируют рекомбинации ДНК;

5) в результате протяженные участки теломерной ДНК преобразуются в кольца и теряются;

6) теломеры укорачиваются на длину утраченной кольцевой ДНК и ускоряют утрату теломерной ДНК в десятки раз;

7) последующий апоптоз большинства клеток и предопределяет старение как биологическое явление.

Данный механизм является альтернативным гипотезе о генетически запрограммированном старении и гипотезе о старении как следствии накопления ошибок и повреждений, объясняет механизм ускорения утраты теломер в случае окислительного стресса и повреждений ДНК, а также взаимосвязь старения и возникновения опухолей (Галицкий, 2009).

Именно эти постгеномные эпигенетические изменения являются первым этапом старения соматической клетки. Но клетки крови живут очень недолго. Клетки сохраняют жизнеспособность в течение ограниченного периода (напр., эритроциты живут 100—120 дней, лейкоциты – 80—120 дней), поэтому они нуждаются в постоянной замене. Этот процесс постоянной замены обеспечивают кроветворные (гемопоэтические) стволовые клетки, находящиеся в красном костном мозге, после 25 лет. Все клетки периферической крови являются потомками кроветворных стволовых клеток или ГСК; из самых крупных ГСК образуются эритроциты. Во время этого процесса происходит несколько преобразований, и одна клетка остается СК или ГСК, а другая клетка становится гемопоэтической клеткой-предшественником (ГКП); эти клетки лишаются ядра, в них накапливается пигмент крови – гемоглобин. Другие клетки становятся дифференцированными и превращаются в различные типы лейкоцитов. Мезенхимальные стромальные клетки костного мозга являются строительным и реконструктивным материалом для реставрации повреждений солидных органов и эндокринных тканей. Очень важен тот факт, что ГСК способны превращаться в любые форменные элементы крови и клеточные элементы ткани, а другие – только в строго определенный вид форменных элементов крови. Тромбоциты, обусловливающие способность крови к свертыванию, возникают при разделении цитоплазмы стволовых клеток. Основными компонентами кроветворной системы после завершения роста и полового созревания являются костный мозг, лимфатические узлы и селезенка. В костном мозге происходит образование эритроцитов, разных форм лейкоцитов и тромбоцитов. Лимфатические узлы участвуют в процессах кроветворения, вырабатывая лимфоциты, плазматические клетки. Селезенка состоит из так называемой красной и белой пульпы. Красная пульпа заполнена форменными элементами крови, в основном эритроцитами; белая пульпа образована лимфоидной тканью, в которой вырабатываются лимфоциты. Помимо кроветворной функции, селезенка осуществляет захват из тока крови поврежденных эритроцитов, микроорганизмов и других чуждых организму элементов, попавших в кровь; в ней вырабатываются антитела. В теле взрослого человека кроветворение происходит в костном мозге коротких и плоских костей. Костная система кроветворения называется миелоидной системой (название произошло от греч. myelos – «костный мозг»). Красный костный мозг – основной орган кроветворения взрослого. В костном мозге, где имеются стволовые кроветворные клетки, происходит образование из них эритроцитов, тромбоцитов и лейкоцитов (гранулоцитов, лимфоцитов, моноцитов). Некоторые виды лейкоцитов вырабатываются в печени, селезенке и лимфатических узлах. Клетки крови, или, точнее, форменные элементы крови, образуются в красном костном мозге, откуда они попадают в большой круг кровообращения.

Таким образом, именно в системе кроветворения человека с возрастом происходит драматическое накопление дополнительных соматических мутаций и формируются патологические информационные постгеномные (эпигенетические, протеомные, транскриптомные, метаболомные, секретомные и т.д.) изменения молекулярно-биологической структуры собственной гемопоэтической (кроветворной) стволовой клетки организма и постгеномные нарушения в других тканеспецифических СК органов и тканей. Подобное утверждение было сделано после анализа научной литературы по данному вопросу и более 20 лет изучения геномики, транскриптомики, протеомики, секретомики и метаболомики тканеспецифичных СК и в первую очередь ГСК, изучения их межклеточных взаимодействий и взаимоотношений с патологическими клетками в организме и роли других СК в процессах патогенеза заболевания (Брюховецкий, Хотимченко, 2018). Но за последние годы понимание накопления эпигенетических нарушений в ГСК никак не объясняло механизма накопления патологических белков. Было очевидно, что неблагоприятное воздействие факторов внешней среды и внутреннего гомеостаза как-то должно было оставлять свой след в ГСК, и только в этом году на модели инфекций этот механизм стал понятен.

Еще 10 лет назад научной догмой иммунологии и гематологии было то, что ГСК – это неспециализированные клетки, слепые к внешним сигналам, таким как инфекции, излучения, интоксикации и т. д. Ведущие российские иммунологи (Черных и др., 2012; Селедцов и др., 2018) и специалисты в области иммунологии гемопоэза (Тупицын и др., 2002—2020, Гривцова и др., 2016) полностью разделяли эту точку зрения зарубежных специалистов (Rossi, 2017). Считалось, что только специализированные дочерние клетки ГСК могли чувствовать эти сигналы и активировать иммунную реакцию. Но работа немецкой лаборатории Дюссельдорфского университета под руководством проф. Michael Sieweke (de Laval, 2020) за последние годы доказала, что эта догма ошибочна, и показала, что ГСК действительно может чувствовать внешние факторы, чтобы специфически и прецизионно производить подтипы иммунных клеток «по требованию» для борьбы с инфекцией и другими патологическими антигенами. Помимо их роли в формировании экстренной иммунной реакции, оставался вопрос о функции ГСК в ответ на повторяющиеся инфекционные эпизоды и об иммунной памяти. Известно, что иммунная система обладает памятью, которая позволяет ей лучше реагировать на возвращающиеся возбудители инфекции и патологические антигены. Научное исследование команды Michael Sieweke et al. (2020) в настоящее время устанавливает центральную роль гемопоэтических стволовых клеток крови в этой долговременной иммунной памяти.

Научный сотрудник компании Inserm Sandrine Sarrazin и соавтор публикации из команды проф. Michael Sieweke утверждает: они обнаружили, что ГСК могли бы способствовать более быстрому и эффективному иммунному ответу, если бы они ранее подвергались воздействию LPS (липополисахарида) – бактериальной молекулы, имитирующей инфекцию. Проф. Michael Sieweke, объяснил, как они обнаружили, что память хранилась в гемопоэтических стволовых клетках: «Первое воздействие LPS приводит к тому, что следы откладываются на ДНК стволовых клеток, прямо вокруг генов, которые важны для иммунного ответа. Подобно закладкам, метки на ДНК гарантируют, что эти гены будут легко найдены, доступны и активированы для быстрого ответа в случае повторного заражения подобным агентом». Далее авторы исследовали, как память об антигене была записана на ДНК, и нашли белок C/EBPb. Это известный энхансерный белок, связывающийся с CCAAT-последовательностью, с которой связываются транскрипционные факторы для активации гена старения SMP30, или регукальцина (Regucalcin, RGN), также известного как маркер старения protein-30 (senescence marker protein-30). Вместе эти выводы должны подвести нас к улучшению настройки иммунной системы или улучшению стратегий вакцинации с одной стороны и к фундаментальному пониманию механизмов накопления эпигенетических изменений вокруг активных генов ГСК, участвующих в старении, с другой стороны.

Способность иммунной системы отслеживать предыдущие инфекции и более эффективно реагировать на них при повторном появлении является основополагающим принципом работы вакцин, но этот феномен накопления эпигенетических изменений рядом с геномом клетки приводит к ее старению, быстрому изнашиванию и даже смерти. Теперь, когда стало понятно, как стволовые клетки крови маркируют цепи иммунного ответа, ученые должны быть в состоянии оптимизировать стратегии иммунизации, чтобы расширить защиту для инфекционных и противоопухолевых агентов, а также отработать возможность очистки генома ГСК от эпигенетических антигенных шлаков, накапливающихся вокруг генома, и научиться их удалять. В более общем плане это также может привести к появлению новых способов усиления иммунного ответа в случае его недостаточной эффективности или отключения в случае чрезмерной реакции (de Laval, 2020). То есть накопление белка C/EBPb в эпигеноме ГСК – это важнейший элемент иммунной памяти, а не накопление эпигенетического «мусора» в них.

Особенно иллюстративно это научное положение о накоплении эпигенетического «мусора» вокруг активных генов, приводящем к нарушению функционирования клетки, на модели рака и других злокачественных заболеваний. Сегодня общепризнанное определение рака звучит так: рак – это генетическое заболевание ядра стволовой клетки (Канцерогенез, 2014). Приблизительно так же рассматриваются и другие фатальные заболевания цивилизации, где ведущими являются несостоятельность и недостаточность функций тканеспецифических стволовых клеток. Наряду с этим убедительных данных об исключительной роли повреждения (мутации) определенных генов при раке и целом ряде злокачественных новообразований нет. Есть достаточно большой набор поврежденных генов, который в каждом случае разный. При этом наличие эпигенетических, протеомных и транскриптомных изменений в ОК описано всеми исследователями, и они имеют закономерный характер. Именно накопление патологических белков в клетках при старении и практически при всех болезнях цивилизации является общим признаком и формирует повреждение генов. То есть в клетке с возрастом происходит первичное накопление постгеномных изменений, которые в ряде случаев формируют различные геномные повреждения – дополнительные соматические мутации. Это положение кардинально меняет стратегию лечения старости как болезни и целого ряда фатальных заболеваний цивилизации, имеющих аналогичный патогенез развития.

Но накопление различных патоспецифических белков в различных типах высокодифференцированных клеток организма – это явление достаточно типичное для возрастзависимых болезней, но его недостаточно для возникновения физиологической старости. Любой стресс и другие неблагоприятные этиопатогенетические факторы внутренней и внешней среды способны запустить цепь патобиологических процессов в пострадавшей клетке и обеспечить в ней накопление эпигенетических изменений ДНК, появление патологических РНК и патологических белков. Другой аспект, который делает постгеномный подход к старению клеток привлекательным, – это понимание фундаментальной биологической разницы между разными типами клеток и тканей организма. Например, клетки, которые активно делятся, с большей вероятностью пострадают от накопления мутаций и утраты теломер, чем дифференцированные клетки. В то же время необходимо уточнить, что данный тезис не относится к быстро и многократно делящимся трансформированным и опухолевым клеткам, которые не утрачивают теломер и не накапливают мутаций. Дифференцированные клетки с большей вероятностью пострадают от повреждения белками, чем клетки, которые быстро делятся и «разбавляют» поврежденные белки вновь синтезированными. Даже если клетка теряет способность к пролиферации за счет процессов старения, баланс механизмов повреждения в ней сдвигается.

Это достаточно обычный тип реагирования клетки на любое отрицательное воздействие, и механизм формирования этих протеинов хорошо известен и описан. Эволюционным механизмом решения этой проблемы для любой соматической и половой клетки является митоз. В результате митоза при делении клетки все патологические белки изолируются в одной части клетки, и при отшнуровывании и разделении клетки на две дочерние клеточные системы они локализуются в одной из них. Клетка, получившая в процессе деления столь большое количество патологических белков, становится нежизнеспособной и по механизму апоптоза погибнет и будет утилизирована иммунокомпетентными клетками организма, а здоровая клетка, освободившаяся от патологических белков, сможет продолжить свое нормальное существование. Поэтому простой феномен накопления эпигенетических изменений в ДНК и патологических белков в цитоплазме стареющей гемопоэтической стволовой клетки и может стать постгеномным стимулом старения всего организма и быть тем системообразующим фактором, который запускает весь каскад системного старения. Идея, что именно молекулярно-биологические постгеномные структурные изменения ГСК запускают весь процесс старения организма и приводят к его смерти, становится реальной при более фундаментальном рассмотрении роли и места ГСК во всей иерархии клеток и тканей организма человека.

Другими словами, наш Создатель (Бог, Природа или Эволюция) смоделировал наш организм настолько совершенным и оптимальным, что все его системы жизнеобеспечения, ткани и органы были способны самообновляться, реставрировать повреждения ткани, управлять саногенезом, саморегенерацией и саморегуляцией. В благоприятных условиях внешней среды, называемой в Библии словом «Рай», человек спокойно мог бы жить тысячу лет, т.к. большинство его клеток способны к замене и самообновлению, а долгоживущие клеточные системы имеют срок жизни около тысячи лет. Но это возможно только в модельной ситуации, а в условиях жизни на Земле все долгоживущие клетки (нервные клетки, клетки кости, ГСК, МССК и др.) подвергаются агрессивному воздействию факторов окружающей микросреды (неблагоприятные климатические условия, бактерии, вирусы, хищники и т.д.) и становятся самой главной мишенью этой совершенной системы, созданной Создателем. В ряду всех долгоживущих клеток именно кроветворные СК подвержены накоплению большего количества мутаций, значительно больше, чем нервные, мышечные и костные клетки. Именно ГСК и есть основная мишень для воздействия всех неблагоприятных факторов внешней и внутренней среды. Расположенные в нишах костного мозга, находящихся в длинных трубчатых костях, грудине и костях таза, они на первый взгляд являются самыми защищенными элементами в организме человека. Они защищены каркасом плотной костной ткани и, казалось бы, подвергаются механическому повреждению в меньшей мере. Но это не спасает их от повреждающих механических, инфекционных, токсических и вирусных воздействий факторов окружающей среды. И, казалось бы, бессмертные клеточные системы к концу жизни человека значительно уменьшаются в количестве и погибают. К 70 годам их количество в костном мозге сокращается в 10—15 раз, а иногда и более.

Гемопоэтическая стволовая клетка, или кроветворная стволовая клетка (КСК), – это клетка – родоначальница всей многомиллиардной системы клеток кроветворения (гемопоэза), всех клеток иммунной системы (иммунопоэза) и главный регуляторный, управляющий и саногенетический инструмент среди всех 220 типов тканеспецифических соматических и стволовых клеток в организме человека. ГСК впервые были описаны русским эмигрантом в США проф. А. А. Максимовым в 1908 г. как клетки – родоначальницы кроветворения. А. А. Максимовым было показано, что именно ГСК – это клетки, формирующие гемопоэз, т.е. клетки, лежащие в основе всего процесса кроветворения человека и животных. Но как мощное терапевтическое средство они не получили своего заслуженного признания в нач. ХХ в. Более полувека они были забыты, и только в сер. 1960-х гг. ГСК были успешно применены для лечения острых и хронических лейкозов, лимфолейкозов и миелолейкозов у взрослых и детей путем проведения трансплантации костного мозга (Менткевич, Маякова, 2010). Невероятные успехи в лечении рака крови и даже полное излечение больных от этого онкологического недуга обусловили широкое, но преимущественно одностороннее, в основном онкогематологическое применение ГСК в лечении заболеваний человека. Позже, к концу ХХ в., ГСК в большинстве современных исследований широко применялись для восстановительного лечения нарушенного гемопоэза у онкологических пациентов после высокодозной химиотерапии и лучевой терапии опухолей. ГСК использовались как фундаментальная основа трансплантаций костного мозга в лечении неопластических образований, но прямого противоопухолевого эффекта ГСК на раковые клетки ранее доказано не было (Брюховецкий А. С., 2011). По крайней мере в доступной нам литературе ничего подобного мы не нашли.

ГСК с маркерами клеточной поверхности CD34+, CD45+HLA-DR—, CD38—Gp130— в организме человека являются самыми универсальными регуляторами гомеостаза, т.к. имеют самый большой период жизненного клеточного цикла (ок. 360 дней; Пальцев и др., 2003). В свете современных концепций системного подхода к управлению очевидно, что в любом биохимическом процессе в организме млекопитающих управляющей системой является самая медленная фаза (Неймарк, 1985). В этой связи ГСК CD34+, CD45+HLA-DR—, CD38—Gp130— обладают доминирующими управляющими свойствами среди всех клеточных систем организма и их регуляторные функции являются системообразующими (Брюховецкий А. С., 2010) для всех нормальных клеток. Также ГСК в зависимости от органных потребностей тканей способны под влиянием сигналов микроокружения трансформироваться как в НСК, так т в МССК, что с позиций теории клеточного замещения является крайне важным для реставрации поврежденных тканей.

Функцию обновления и восстановления тканей in vivo выполняют преимущественно тканеспецифичные СК, которые представляют собой пул запасных недифференцированных стволовых клеток и клеток – предшественников различных типов тканей (Тепляшин, 2005). Выделены различные типы тканеспецифичных СК взрослого организма: гемопоэтические CD34+CD45+ (предшественники всех клеток крови) СК (ГСК) (патент РФ № RU 228319), нейрональные (CD133+СD133—) СК (предшественники клеток нервной ткани, НСК) (патент РФ № RU 3394593), мезенхимальные (CD10+, CD13+, CD44+, CD90+ (Thy-1), CD105+, CD34—, CD45— и CD117—) стромальные СК (МССК – клетки, способные дифференцироваться в клетки тканей мезенхимального происхождения) (патент РФ № RU 2252252), а также СК других зародышевых листков.

Необходимо отличать как взрослые ГСК CD34+CD45+HLA-DR—CD38—Gp130— от гемопоэтических клеток-предшественников, имеющих несколько другие маркеры клеточной поверхности: CD34+, CD45—HLA-DR+, CD38+Gp130+, так и взрослые МССК с маркерами клеточной поверхности CD10+, CD13+, CD44+, CD90+ (Thy-1), CD105+, CD34—, CD45— и CD117— от мезенхимальных стромальных прогениторных клеток (МСПК) CD10+, CD13+, CD44—, CD90+ (Thy-1), CD105+, CD34+, CD45+ и CD117+. Помимо отличия в маркерах клеточной поверхности, ГСК и МССК отличаются от ГКП и МСПК своими фундаментальными свойствами и функциями. Только взрослые СК способны при делении давать 2 СК или СК и прогениторные клетки-предшественники (ПКП), а ПКП способна поделиться только на 2 ПК, которые неспособны в обычных условиях производить СК. Функциональная плюрипотентность свойственна только СК, а у ПК она значительно ниже, чем у СК. Для ПК характерны мультипотентность и склонность к дифференцировке.

Самым первым и самым эффективным опытом терапии с использованием СК, позволившим полностью излечить пациентов от рака крови еще в 60-х гг. прошлого века, был опыт применения при ТКМ в случаях гемобластозов препарата ГСК и ГКП, т.е. клеток, являющихся предшественниками кроветворения. Путем трансплантации ГСК, полученных из костного мозга донора, удалось заместить все клетки кроветворения (гемопоэза) реципиента и полностью вылечить больного, страдающего острым миелолейкозом. Поэтому противоопухолевые свойства ГСК в онкогематологии являются золотым стандартом терапии ГСК и постоянным предметом изучения ученых уже более 70 лет. Более того, сегодня стало очевидно, что ГСК кроме формирования кроветворения имеют в организме важнейшую регуляторную и системообразующую функцию. В связи с этим считается, что применение биомедицинских клеточных продуктов (БМКП), изготовленных на основе ГСК, является наиболее перспективным направлением в современной медицине (Тупицын и др., 2014; Отчет DARPA за 2011). Уже более 100 тыс. пациентов по всему миру получили лицензированный американский клеточный продукт «Гемакорд», содержащий ГСК пуповинной крови.

Взрослые ГСК CD34+CD45+HLA-DR—CD38—Gp130— обладают уникальной способностью направленного трансфера в зону повреждения тканей органа, мигрируя на градиент концентрации воспаления (патотропизм, или хоуминг СК) (Брюховецкий А. С., 2013). ГСК, попадая в головной и спинной мозг, являются мощным индуктором синапсогенеза в них или участвуют в формировании новых межклеточных контактов в тканях солидных органов (Брюховецкий А. С., 2010, 2013).

Известно, что при пересадке ГСК в различные органы (почки, мозг, печень и т.д.) не наблюдолась их прямой трансдифференцировки в специализированные клетки (кардиомиоциты, миоциты или клетки кожи) этих органов, а трансплантация клеток – предшественников гемопоэза в сердце не приводила к формированию нейронов или секреторных клеток кишечника. Дифференцировка in situ, как правило, контролировалась сигналами микроокружения. Хорошо известна потенциальная возможность трансдифференцировки ГСК в НСК in vitro под воздействием определенных пертурбогенов (ретиноевая кислота; Kuroda et al., 2010). Многолетние клинические наблюдения также подтвердили отсутствие аномалий дифференцировки СК в трансплантате. В то же время ГСК обладают функцией целенаправленной миграции к зонам повреждения (Брюховецкий А. С., 2003; Чехонин и др., 2005; Баклаушев и др., 2014) в головном мозге, как и НСК и МССК. В 2003 г. J. Praice в Англии запатентовал технологию (патент №2216336 от 20.11.2003) трансплантации ГСК для интрацеребрального введения при лечении поврежденного мозга, которая также рекомендована авторами для использования в терапии болезни Альцгеймера, болезни Паркинсона и болезни Крейцфельда – Якоба. Аналогичные свойства целенаправленной миграции к повреждению, хоуминга, патотропизма ГСК характерны и для других тканеспецифических СК и их предшественников, таких как МССК и НСК (Snyder et al., 1997).

В настоящее время доказано, что трансплантированные клетки лейкоконцентрата мобилизованных мононуклеаров формировали костно-мозговые кластеры ГСК и гемопоэтических прогениторных клеток (ГПК) в ткани поврежденного органа (Ono et al., 1999). В нашей работе было показано, что мультиклеточный кластер мобилизованных МНК, ГСК и ГКП человека после введения в организм (кровь, ликвор, ткань органа) крысы вел себя как системообразующий по отношению к входящим в него клеткам, и те очень организованно и скученно мигрировали преимущественно (78%) в пострадавший орган, а затем и в зону максимального повреждения этого органа и равномерно распределялись в этой зоне (Брюховецкий А. С., 2013). E. Snyder описал подобный эффект миграции НСК за 36 дней при введении их в нервную ткань мозга из правого (интактного) полушария в левое полушарие, где была смоделирована глиальная опухоль мозга мыши. В нашем исследовании повторение данного эксперимента было проведено на крысах с глиомой С6. Введение лейкоконцентрата мобилизованных мононуклеаров, содержащих ГСК и МССК человека, в правое полушарие мозга крысы с моделированной глиобластомой в левом полушарии приводило к миграции ГСК в опухоль в течение не более чем 14 дней. Этот феномен может быть ключевым не только в решении вопроса регенерации органов и тканей после повреждения, но и в разработке и создании клеточных препаратов на основе ГСК в нейроонкологии и при старении. Именно клеточный кластер трансплантированных кроветворных стволовых клеток имеет важнейшее значение для трансфера этих клеток к месту повреждения, а также целенаправленного распределения их в зоне повреждения патологического органа и адгезии СК к пострадавшим клеткам, оказания оптимального саногенетического, регуляторного и реставрационного воздействия СК и их предшественников на поврежденные клетки органа и ткани.

По-видимому, роль клеток микроокружения ГСК в восстановлении нарушенного гемопоэза является определяющей для уровня функциональной активности ГСК как в нише костного мозга, так и для ГСК, трансплантируемых в кровь или ткань, а также переливаемых в ликвор в составе кластера костно-мозговых клеток. В этой связи мы полагаем, что для того, чтобы получить требуемый функциональный (регуляторный, противоопухолевый, нейрореставрационный и т.д.) эффект ГСК в организме человека, целесообразно использовать их именно в составе лейкоконцентрата, содержащего весь спектр клеток микроокружения костно-мозговой ниши. Именно поэтому в клинике нервных болезней мы широко использовали именно этот подход введения ГСК с мононуклеарами их микроокружения в организм неврологического и нейроонкологического пациента при их интравентрикулярной или интратекальной трансфузии в ликвор. ГСК мы вводили обязательно в составе мононуклеарной фракции лейкоконцентрата мобилизованной периферической крови, т.к. эффекта от введения чистой культуры ГСК мы не отметили ни в эксперименте, ни в клинике (Брюховецкий А. С., 2010, 2011, 2013; Брюховецкий А. С. и др., 2014, 2016). Интересно, что изолированное введение клеток лейкоконцентрата мононуклеаров, освобожденных от ГСК (СD34+CD45+CD45—), не обеспечивает требуемых нейрореставрационных эффектов в эксперименте у крыс (Брюховецкий А. С. и др., 2015), как и изолированное введение очищенных ГСК не дает нужных эффектов нейрорегенерации (Брюховецкий, Хотимченко, 2018). Поэтому старая английская пословица «Короля делает свита» как нельзя правильно характеризует взаимоотношения ГСК и клеток их нишевого микроокружения.

На страницу:
11 из 12