
Полная версия
Вглядываясь в пустоту. Сборник философских эссе
До появления теории относительности общепризнанной считалась ньютоновская картина мира, в которой пространство и время играют роль сцены, на которой разворачивается пьеса физических процессов. Эйнштейн же показал, что при постоянстве скорости распространения света время просто напросто не может быть неизменным. Согласно специальной теории относительности при приближении объекта к скорости света течение времени для этого объекта замедляется, а его длина сокращается. Более того из теории следует, что разные наблюдатели могут даже не сойтись во мнениях о том, какое из двух событий предшествовало другому.
После создания специальной теории относительности Эйнштейн заинтересовался другим вопросом, поставленным за столетия до этого немецким математиком Карлом Фридрихом Гауссом – какая геометрия присуща пространству нашей Вселенной? Сам Гаусс хотел выяснить ответ на этот вопрос измерениями, произведенными на вершинах трех гор. Однако, как оказалось впоследствии, этот вопрос гораздо сложнее и не может быть решен так просто.
Ответом на вопрос о геометрии пространства стала выведенная Эйнштейном общая теория относительности. Вдохновение для создания этой теории и многие мысли Эйнштейн почерпнул у известного немецкого физика и философа Эрнста Маха. Философские рассуждения Маха касались вопроса о том, когда вообще возникают время и пространство. Если представить себе абсолютно пустую вселенную с одним единственным точечным объектом, то в этой вселенной невозможно найти ни время, ни пространство. Если представить себе вселенную с двумя объектами, то в ней становится возможно определить одномерное пространство, как расстояние по прямой между объектами, но пока что нельзя определить время. Время во вселенной появляется только тогда, когда в ней существуют цепочки фактов с периодически повторяющимися паттернами – в этом случае становится возможным измерять периодичность одних событий относительно других.
В своей теории Эйнштейн развил идеи Маха о том, что пространство и время являются лишь отношениями между объектами и событиями и придал им строгие математические формулировки. Такая точка зрения на пространство и время привела Эйнштейна к ответу на вопрос о присущему пространству типу геометрии. Но что вообще такое тип геометрии?
Нам кажется очевидным, что наше трехмерное пространство соответствует евклидовой геометрии – геометрической теорией, выведенной древнегреческим математиком Евклидом и изучаемой сейчас в каждой школе. Геометрия Евклида зиждется на пяти постулатах:
– От всякой точки до всякой точки можно провести прямую.
– Ограниченную прямую можно непрерывно продолжать по прямой.
– Из всякого центра всяким радиусом может быть описан круг.
– Все прямые углы равны между собой.
– Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых.
На основе этих пяти постулатов Евклид в своих «Началах» доказал множество теорем, однако в большинстве своих доказательств он опирался только на первые четыре постулата. Пятый постулат всегда казался Евклиду и другим математикам чужеродным и уродливым, но доказать его исходя из предыдущих четырех никому не удавалось. В XIX веке математики решили пойти другим путем и доказать пятый постулат от обратного – принять постулатом утверждение обратное пятому постулату Евклида, построить геометрическую теорию на основе четырех классических постулатов и отрицании пятого и, придя к противоречию, тем самым доказать пятый постулат как теорему. Но этот метод привел математиков к неожиданным результатам. Теоремы неевклидовой геометрии получались противоестественными, противными здравому смыслу, но никак не приводили к противоречиям. Со временем математики пришли к неутешительному выводу, что неевклидова геометрия абсолютно равноправна геометрии Евклида.
Открытие неевклидовой геометрии пролило свет на невозможность точного словесного определения таких базовых объектов геометрии как точка и прямая. Оказалось, что значение того, что такое точка и прямая, в разных геометриях зависит от контекста – то есть от всех теорем этой самой геометрии. Сами по себе понятия точки и прямой не фундаметальны, а обретают смысл в зависимости от постулатов и теорем определенной геометрии.
Со временем появились несколько различных неевклидовых геометрий – геометрия Лобачевского, сферическая геометрия и геометрия Римана, но все же считалось, что эти геометрии – это игра в математические абстракции, упражнение для ума и не более того. Физическое пространство все еще считалось соответствующим геометрии Евклида. Однако в общей теории относительности Эйнштейн опроверг это утверждение – оказалось, что никакой тип геометрии не присущ пространству как таковому. Согласно теории Эйнштейна пространство искривляется под воздействием исходящей от материи гравитации и может принимать любую форму. Форма пространства в свою очередь влияет на поведение материи. Ученик Эйнштейна американский физик Джон Арчибальд Уилер кратко описал общую теорию относительности Эйнштейна в одном предложении: «Геометрия определяется материей, а материя следует за геометрией».
Философия Маха и две теории относительности Эйнштейна привели мир к пониманию того, что ни время, ни пространство не являются чем‐то абсолютным. Согласно теории относительности время и пространство – это не что‐то реально существующее, а лишь субъективная интерпретация происходящих в мире событий или иными словами иллюзия.
Получается, что мир, как писал Витгенштейн, определяется фактами, а время и пространство – это всего‐лишь интерпретация этих фактов. Единственный абсолют, который не подвергли сомнению теории Эйнштейна – это принцип причинности. Несмотря на то, что даже последовательность событий для разных наблюдателей может быть разной, события могут повлиять на другие события лишь в пределах своего светового конуса – области распространения причинно‐следственных связей со световой скоростью.
Свои философские взгляды Альберт Эйнштейн описывал как космическую религию, вдохновленную по словам самого Эйнштейна, воззрениями Спинозы, Пифагора и Платона. Главным для Эйнштейна всегда оставалось созерцание воплощенной в мире невероятной красоты. Эйнштейн писал:
Идею личного Бога антропологической концепции я не могу воспринимать всерьёз. Я также чувствую, что не предоставляется возможным представить себе желание или цель вне человеческой сферы. Мои взгляды близки к Спинозе: восхищение красотой и вера в логический порядок вещей, которые мы можем понять смиренно и только частично.
Меня можно считать платонистом или пифагорейцем, так как я считаю логическую простоту незаменимым и эффективным инструментом своего исследования.
Человеку, который религиозно просвещён, как мне кажется, с его способностями легче освободится от оков своих корыстных желаний и заняться мыслями, чувствами и стремлениями, которые для него являются особо ценными. Мне кажется, что важно, так это сила сверхличностного содержания… независимо от любых попыток объединить это содержание с божественным существом. В противном случае невозможно было бы считать Будду и Спинозу религиозными деятелями. Соответственно, религиозный человек набожный в том смысле, что он не сомневается в значимости этих суперличных вещей и целей, которые не требуют рационального объяснения и обоснования.
В 1921 году Эйнштейну присудили Нобелевскую премию по физике. Новость о награде застала Эйнштейна во время его долгого путешествия по Востоку, в ходе которого он встретился с другим нобелевским лауреатом – бенгальским поэтом Рабиндранатом Тагором, в 1913 году получившим премию по литературе за свою поэму «Гитанджали». Эйнштейн и Тагор вели долгие беседы об устройстве мироздания – учёный рассуждал с точки зрения физика, поэт с точки зрения философии и религии. В 1930 году Тагор нанес Эйнштейну ответный визит. Двое великих мыслителей встретились в доме Эйнштейна под Берлином и также как и в прошлый раз долго беседовали о природе реальности. Тагор пытался доказать Эйнштейну, что реальность порождается в виде субъективного опыта, Эйнштейн же отстаивал позицию существования объективной, независимой от субъекта реальности.
Спустя несколько лет после второй беседы Эйнштейна с Тагором к власти в Германии пришел Адольф Гитлер. Из‐за своего еврейского происхождения Альберт Эйнштейн был вынужден покинуть Германию и эмигрировать в США. Из вынужденной эмиграции он не вернулся даже после войны.
Блестящие научные идеи Альберта Эйнштейна открыли для человечества путь к созданию атомной бомбы. Поначалу сам учёный, потерявший нескольких родственников в немецких концлагерях и бывший из‐за этого убежденным сторонником сионизма и всей душой ненавидевший Гитлера, относился к этой идее как к необходимому злу. Но тогда никто и предположить не мог насколько ужасающе мощным окажется атомное оружие. Глядя на первый в истории ядерный взрыв, руководитель американского атомного проекта Роберт Оппенгеймер произнес знаменитую фразу, перефраз цитаты из индийской Бхагавадгиты – «Я – смерть, разрушитель миров». Сам же Эйнштейн, видя к чему привело создание и использование атомного оружия и сожалея тому, что он поспособствовал этому, стал одним из главных его противников и выпустил написанный совместно с Бертраном Расселом манифест к правительствам всех развитых стран с призывом к остановке ядерной гонки. Кроме того, в историю вошел его знаменитый ответ корреспонденту на вопрос «Какое оружие будет использоваться в Третьей Мировой войне?» – «Я не знаю. Но я могу сказать вам, что будут использовать в Четвёртой – камни!»
Наибольшее влияние на становление квантовой механики оказал проведенный английским физиком Томасом Юнгом еще в самом начале XIX века двухщелевой опыт. В этом эксперименте пучком света облучалась пластина с двумя прорезями, и на находящемся за пластиной экране оказывалась видна интерференционная картина. Результатами этого опыта во времена Юнга доказывали волновую природу света и опровергали корпускулярную теорию света Исаака Ньютона. Однако после открытия фотоэффекта, который можно было объяснить только поглощением одиночных фотонов, корпускулярная теория снова вернулась в строй. Со временем ученые, изучая свет, пришли к выводу о его корпускулярно‐волновой природе.
Однако важнейшей для квантовой механики деталью опыта Юнга стало исчезновение интерференции световых волн при закрытии одной из щелей детектором фотонов. Оказалось, что у фотона нет какого‐то определенного пути, когда обе щели открыты – он проходил через обе щели сразу как волна, но когда одна щель закрыта детектором – он всегда проходит либо через одну, либо через другую щель как частица. Фотон как будто бы знает, что ему перекрыли второй путь и перестает демонстрировать волновую природу.
Это ставило физиков в тупик. Объективная реальность рушилась на глазах. Получалось, что что‐то внятное о мире можно сказать только по факту регистрации попадания фотона на детектор или на экран, а все что происходит между испусканием фотона и его регистрацией казалось совершенным безумием.
В 1925 году юный немецкий физик Вернер Гейзенберг под руководством своего наставника Макса Борна опубликовал статью, в которой изложил основанный на матрицах подход к анализу этого безумия. После создания матричного метода Борн и Гейзенберг решили посоветоваться с известным немецким математиком Давидом Гильбертом и узнать, известна ли ему какая‐либо область математики с похожим математическим аппаратом. Гильберт ответил им, что с похожим подходом он встречался, изучая вопросы существования решений дифференциальных уравнений второго порядка в частных производных. Физики не поняли математика или подумали, что тот не понял их. Однако спустя всего несколько месяцев австрийский физик Эрвин Шрёдингер опубликовал работу, в которой представил подход к квантовой механике, основанный на уравнении второго порядка в частных производных, полностью эквивалентный матричному подходу Гейзенберга.
Из матричного подхода к квантовой механики Гейзенберг в 1927 году вывел свой знаменитый принцип неопределенности, гласящий что существует фундаментальный предел точности одновременного определения пары связанных квантовых переменных – например, координаты в пространстве и импульса. Измеряя одну из этих характеристик с большей точностью, мы лишаем себя возможности точно измерить вторую. В том же году датский физик Нильс Бор сформулировал родственный принцип – принцип дополнительности, гласящий что для полного описания любого квантового явления нужно применять два дополнительных друг другу набора понятий классической физики: например, для описания поведения фотона нужно рассматривать его и как волну, и как частицу – одно из описаний без другого попросту не имеет смысла. Таким образом оказалось, что физическая реальность на микроуровне может быть описана только с помощью взаимозависимых понятий.
В 1932 году за свои достижения Вернер Гейзенберг был удостоен Нобелевской премии по физике. В следующем году, после прихода к власти Гитлера, несмотря на некоторые неудобства Гейзенберг не покинул Германию, а в конце 30-х даже возглавил немецкий атомный проект. Доподлинно неизвестно честно ли он выполнял свои обязанности или неявно мешал созданию бомбы нацистским режимом, но проект немцы так и не завершили. После войны учёный вложил огромное количество сил в мирную атомную промышленность Германии, однако всегда резко выступал против разработки Германией атомного оружия и его распространения вообще где‐бы то ни было в мире.
Несмотря на то, что Вернер Гейзенберг всю жизнь был набожным христианином, его взгляд на мир, по его собственному признанию, лучше всего выражает книга американского физика Фритьофа Капры «Дао физики», в которой проводятся параллели между индийско‐буддийской философией и квантовой механикой. В этой книге Вселенная представляется в виде бесконечного циклического танца бога Шивы. Возможно, что так на Гейзенберга повлияло общение с уже упомянутым Рабиндранатом Тагором, после которого, как писал сам Гейзенберг, «некоторые казавшиеся безумными идеи обрели смысл». Также Гейзенберг восхищался философией Платона – он писал:
Если мы хотим сравнить результаты современной физики частиц с идеями любого из старых философов, то философия Платона представляется наиболее адекватной: частицы современной физики являются представителями групп симметрии, и в этом отношении они напоминают симметричные фигуры платоновской философии.
Спустя полгода после того, как мир увидел матричную механику Гейзенберга, австрийский физик Эрвин Шрёдингер представил математически‐изоморфный, однако гораздо более удобный взгляд на квантовые процессы – через призму волновой механики. В центре этого подхода находится уравнение, описывающее развитие состояния квантовой системы в виде волны. У этого уравнения, в последствии названного в честь самого Шрёдингера, есть несколько невероятных свойств.
Во‐первых, это уравнение содержит в себе i – мнимую единицу, равную корню из -1. До Шрёдингера считалось, что законы нашего мира должны быть полностью «реальными», то есть содержать в своих формулировках только действительные числа. Мнимая единица считалась хитроумным математическим трюком, искусственным приёмом: никто и предположить не мог, что она может лежать в основе всей реальности.
Мы с легкостью можем представить себе одно яблоко, два яблока, три яблока. При некотором усилии мы можем представить себе даже минус одно яблоко, например, как некий долг перед другом. Но совершенно невозможно себе представить, как выглядит «одно мнимое» яблоко. Несмотря на это, именно мнимая единица стоит в основном уравнении нашей физики.
Во‐вторых, это уравнение описывает квантовые системы в виде волн амплитуд вероятности. Проводя физический эксперимент, ученые не могут увидеть эту волну напрямую, они могут лишь зарегистрировать или не зарегистрировать какие‐то определенные события. Из множества зарегистрированных событий ученые могут вычислить вероятность их наступления в определенные моменты времени, и обнаружить, что со временем эта вероятность меняется согласно уравнению Шрёдингера.
Мы, люди, не можем представить себе, что такое волна амплитуды вероятности – это попросту недоступно нашему воображению. Мы видим мир как события, которые могут случится, а могут не случится, но согласно волновой механике Шрёдингера на самом фундаментальном уровне реальность представляет из себя не события, а именно волны амплитуд вероятности этих событий. Получается, что истинная реальность находится вне наших представлений и недоступна напрямую нашему разуму.
В‐третьих, уравнение Шрёдингера описывает развитие квантовой системы от одного определенного события, например, от момента вылета электрона из физического прибора, до момента другого события, например, момента регистрации положения этого электрона в пространстве. После вылета из прибора и до момента измерения вероятность обнаружить электрон в некой точке пространства точно описывается уравнением Шрёдингера. Но в момент измерения и обнаружения электрона, Вселенная как бы «схлопывает» волновую функцию в одну точку, и в дальнейшем поведение электрона также подчиняется волновому уравнению, но относительно этой самой точки первого обнаружения.
Эта особенность, называемая коллапсом волновой функции, приводила всех физиков в ужасное замешательство. С одной стороны, изменение амплитуды вероятности обнаружения электрона в разных точках пространства полностью детерминировано и описывается уравнением Шрёдингера. С другой стороны, в момент измерения случается некое волшебство: электрон абсолютно случайным образом оказывается в одном строго определенном положении, и в дальнейшем амплитуда вероятности его обнаружения начинает зависеть от этого положения.
Часто в научно‐популярной литературе встречается утверждение, что пока не произошло измерение, электрон как бы размазан в пространстве или что какое‐то его свойство, например спин, находится в состоянии одновременного сочетания двух противоположностей, так называемой суперпозиции. Однако это утверждение не только неверно – оно полностью извращает основные идеи квантовой механики. На самом деле, такими свойствами как спин и положение в пространстве может обладать лишь частица. А частица – это проявление электрона в мире, каким его видим мы – в мире отдельных событий и бинарных противоположностей. Между измерениями же никакой частицы не существует – существует лишь волна.
Это приводит нас к другому популярному заблуждению из научно‐популярной литературы о том, что электрон – это одновременно и волна, и частица. Однако это совершенно неверное представление о корпускулярно‐волновом дуализме. На самом деле, частица – это событие, которое является проявлением волны амплитуды вероятности этого события. Мир отдельных событий, или как его часто называют, классический мир, состоящий из событий, частиц – это тот самый мир, каким его видим мы. Именно про этот мир Людвиг Витгенштейн писал в своем трактате, как о состоящем из фактов и определяемым фактами. Мир же, какой он есть на самом деле, квантовый мир, недоступен нам в открытую – он лишь проявляется в классическом мире. Мы словно живем в платоновской пещере и видим на её стенах лишь тени истинной реальности.
В коллапсе волновой функции больше всего физиков всегда удивляла именно его случайность. Эйнштейн, не веря в случайность природы, в жарком споре с Нильсом Бором выпалил свое знаменитое изречение: «Бог не играет в кости!», на что получил ответ Бора: «Эйнштейн, не учите Бога, что ему делать». Дабы доказать, что случайность и неопределенность квантовой механики приводят к безумным выводам, Эйнштейн вместе с коллегами опубликовал знаменитый парадокс с запутанными частицами.
Эйнштейн предложил использовать в эксперименте физический процесс, который порождает две частицы, чьи состояния связаны друг с другом. Если разнести эти частицы на достаточно большое расстояние и замерить у них свойства, совместное измерение которых для одной частицы запрещено принципом неопределенности Гейзенберга, то случится одна из двух альтернатив. Мы успешно измеряем оба свойства, а следовательно нарушается принцип неопределенности. Следовательно квантовая механика неполна или неверна. Измерение свойства одной частицы изменяет состояние второй частицы, и это взаимодействие распространяется мгновенно и выше скорости света. Следовательно, нарушается ограничение распространения взаимодействий скоростью света.
В ходе экспериментов выяснилось, что верна вторая альтернатива и взаимодействие распространяется выше скорости света. По началу ученые надеялись, что возможно у частиц существуют некие ещё неизвестные науке скрытые параметры. Это предположение можно проиллюстрировать следующим примером. Представьте себе, что вы кладете в мешочки белый и черный шар, не глядя перемешиваете мешочки и разносите их на огромное расстояние. Открыв один из мешочков и увидев белый шар, второй шар мгновенно изменит свое состояние с неопределенного на черный.
Чтобы доказать или опровергнуть теорию скрытых параметров ирландский математик, Джон Стюарт Белл создал неравенства, которые нарушались бы при истинной случайности и выполнялись бы при существовании скрытых параметров. В ходе экспериментов было доказано, что неравенства Белла нарушаются, а следовательно коллапс волновой функции истинно случаен.
На основе придуманного Эйнштейном парадокса были созданы технологии квантовой телепортации и квантовой связи. Однако передавать информацию свыше скорости света через такую связь невозможно. Таким образом, скорость света ограничивает именно распространение информации, а не взаимодействия, и несмотря на всю странность происходящих в ЭПР‐эксперименте явлений, Вселенная остается самосогласованной.
Но результат ЭПР‐эксперимента имеет и более глубокую философскую подоплеку. Если состояние частиц определяется только во время измерения, и никаких скрытых параметров не существует, то получается, что состояние частиц до момента измерения попросту не существует. Мир определяется лишь фактами, полученными в ходе экспериментов.
Эрвин Шредингер проводил схожее рассуждение на примере мысленного эксперимента с котом, с которым его имя оказалось неразрывно связано в поп‐культуре. Шредингер предлагал представить кота, находящегося в надежно изолированной от остального мира коробке. В коробке есть механизм с ядом, который приводится в действие в зависимости от того, произойдет или нет какое‐либо случайное квантовое событие – например, распад атома. В таком случае, пока коробка не открыта и не произведено «измерение» жизнедеятельности кота, кот будет как бы жив и мертв одновременно, что кажется абсурдом. И это действительно абсурд, ведь на самом деле, живым или мертвым кот может быть только в мире фактов, а в квантовом мире он не жив и мертв одновременно – кота просто не существует. Живой и мертвый кот – это события, а не состояния.
Но если для нас кот оказывается живым или мертвым в момент открытия коробки, то как чувствует себя сам кот? Долгие годы никто не мог ответить на этот вопрос, пока в 1957 году молодой американский аспирант Хью Эверетт не опубликовал свою диссертацию. Однажды, будучи еще ребенком, Эверетт написал письмо Эйнштейну с вопросами о жизни и природе Вселенной и получил ответ:
Дорогой Хью!
Нет существует таких вещей, как непреодолимая сила и неподвижное тело. Но, кажется, существует очень упрямый мальчик, который пробивается к своим целям через нелепые трудности, созданные им же самим.
С уважением, А. Эйнштейн
И действительно Хью был упорен и несмотря на критику окружающих, под руководством уже упомянутого Джона Арчибальда Уилера опубликовал свою знаменитую диссертацию о многомировой интерпретации квантовой механики. В ней Эверетт утверждал, что единственная возможность убрать случайность из коллапса волновой функции – это избавиться от самого коллапса. Так в интерпретации Эверетта в момент измерения Вселенная как бы разделяется на несколько параллельных, в каждой из которых субъективный наблюдатель обнаруживает разный результат.
По мере распространения волна затрагивает всё больше субъективных наблюдателей, и те понимают в какой именно Вселенной они находятся. Таким образом, кот Шредингера сразу знает в каком варианте вселенной он оказался, а мы узнаем о попадании в конкретную вселенную с живым или мертвым котом только во время открытия коробки.
К сожалению на данный момент проверка истинности многомировой интерпретации не представляется возможной, но теория Эверетта обладает несомненной красотой: она не требует ни коллапса волновой функции, ни отделения классического мира от квантового, ни определения никакой особенной процедуры измерения, ни разделения объективного физического мира и субъективных наблюдателей.