
Полная версия
Fragments of Earth Lore: Sketches & Addresses Geological and Geographical
I shall now briefly summarise what seems to have been the glacial succession in Europe: —



A word of reference may now be made to that remarkable association of evidence of submergence, with proofs of glacial conditions, which has so frequently been noted by geologists. Take, for example, the succession in Scotland, and observe how each glacial epoch was preceded and apparently accompanied by partial submergence of the land: —
1. Epoch of Greatest Mer de Glace (lower boulder-clay); British and Scandinavian ice-sheets coalescent. Followed by wide land-surface = Continental Britain, with genial climate. Submergence of land – to what extent is uncertain, but apparently to 500 feet or so.
2. Epoch of Lesser Mer de Glace (upper boulder-clay); British and Scandinavian ice-sheets coalescent. Followed by wide land-surface = Continental Britain, with genial climate. Submergence of land for 100 feet or thereabout.
3. Epoch of Local Ice-sheets in Mountain Districts; glaciers here and there coalesce on the low-grounds; icebergs calved at mouths of Highland sea-lochs (moraines on 100-feet beach). Followed by wide land-surface = Continental Britain, with genial climate. Submergence of land for 50 feet or thereabout.
4. Epoch of Small Local Glaciers, here and there descending to sea (moraines on 50-feet beach).
These oscillations of the sea-level did not terminate with the emergence of the land after the formation of the 50-feet beach. There is evidence to show that subsequent to the retreat of the small local glaciers (4) and the emergence of the land, our shores extended seawards beyond their present limits, but how far we cannot tell. With this epoch of re-emergence the climate again became more genial, our forests once more attaining a greater vertical and horizontal range. Submergence then followed (the 25 to 30-feet beach), accompanied by colder and more humid conditions, which, while unfavourable to forest-growth, tended greatly to increase the spread of peat-bogs. We have no evidence, however, to show that small local glaciers again appeared. Finally the sea retired, and the present conditions ensued.
It will be seen that the submergence which preceded and probably accompanied the advent of the lesser mer de glace (2) was greater than that which heralded the appearance of the local ice-sheets (3), as that in turn exceeded the depression that accompanied the latest local glaciers (4). There would seem, therefore, to be some causal connection between cold climatic conditions and submergence. This is shown by the fact that not only did depression immediately precede and accompany the appearance of ice-sheets and glaciers, but the degree of submergence bore a remarkable relation to the extent of glaciation. Many speculations have been indulged in as to the cause of this curious connection between glaciation and depression; these, however, I will not consider here. None of the explanations hitherto advanced is satisfactory, but the question is one well deserving the attention of physicists, and its solution would be of great service to geology.
A still larger question which the history of these times suggests is the cause of climatic oscillations. I have maintained that the well-known theory advanced by James Croll is the only one that seems to throw any light upon the subject, and the observations which have been made since I discussed the question at length, some fifteen years ago, have added strength to that conviction. As Sir Robert Ball has remarked, the astronomical theory is really much stronger than Croll made it out to be. In his recently-published work, The Cause of an Ice Age, Sir Robert says that the theory is so thoroughly well based that there is no longer any ground for doubting its truth. “We have even shown,” he continues, “that the astronomical conditions are so definite that astronomers are entitled to direct that vigorous search be instituted on this globe to discover the traces of those vast climatic changes through which astronomy declares that our earth must have passed.” In concluding this paper, therefore, I may shortly indicate how far the geological evidence seems to answer the requirements of the theory.
Following Croll, we find that the last period of great eccentricity of the earth’s orbit extended over 160,000 years – the eccentricity reaching its highest value in the earlier stages of the cycle. It is obvious that during this long cycle the precession of the equinox must have completed seven revolutions. We might therefore expect to meet with geological evidence of recurrent cold or glacial and genial or interglacial epochs; and not only so, but the records ought to show that the earlier glacial epoch or epochs were colder than those that followed. Now we find that the epoch of maximum glaciation supervened in early Pleistocene times, and that three separate and distinct glacial epochs of diminished severity followed. Of these three, the first would appear to have been almost as severe as that which preceded it, and it certainly much surpassed in severity the cold epochs of the later stages. But the epoch of maximum glaciation, or the first of the Pleistocene series, was not the earliest glacial epoch. It seems to have been preceded by one of somewhat less severity than itself, but which nevertheless, as we gather from the observations of Penck and his collaborators, was about as important as that which came after the epoch of maximum glaciation. Hence it would appear that the correspondence of the geological evidence with the requirements of the astronomical theory is as close as we could expect it to be. Four glacial with intervening genial epochs appear to have fallen within Pleistocene times; while towards the close of the Pliocene, or at the beginning of the Pleistocene period, according as we choose to classify the deposits, an earlier glacial epoch followed by genial interglacial conditions, supervened.
In this outline of a large subject it has not been possible to do more than indicate very briefly the general nature of the evidence upon which the chief conclusions are based. I hope, however, to have an opportunity ere long of dealing with the whole question in detail.
[Note. – Since the original publication of this Essay, renewed investigation and study have led me to conclude that the correlation of the British and Continental glacial series is even more simple than I had supposed. I believe the use of the terms “Lower” and “Upper” in connection with the “Diluvial” deposits of the Continent has hitherto blinded us to the obvious succession of the boulder-clays. In Britain we have, as shown above, a “lower boulder-clay,” an “upper boulder-clay,” and the still younger boulder-clays (ground-moraines), and terminal moraines of our district ice-sheets and valley-glaciers. In the low-grounds of the Continent the succession is precisely similar. Thus the lower boulder-clay that sweeps south into Saxony represents the lower boulder-clay of Britain. In like manner, the upper boulder-clay of western and middle Germany, of Poland, and western and north-western Russia, is the equivalent of our own upper boulder-clay. Lastly, the so-called “upper diluvium” and the great terminal moraines of the Baltic coast-lands are on the horizon of the younger boulder-clays and terminal moraines of the mountainous areas of the British Islands. The so-called “lower diluvium” of the Baltic coast-lands thus represents not the lower but the upper diluvium of western and middle Germany, Poland, etc. German geologists are of opinion that the upper boulder-clays of the Baltic coast-lands and of the valley of the Elbe are the ground-moraines of one and the same ice-sheet, which, on its retreat, piled up the terminal moraines of the Baltic Ridge. I believe the two boulder-clays in question are quite distinct, and that the terminal moraines referred to mark the furthest advance of the last great Baltic glacier. The contemporaneity of the two boulder-clays has been taken for granted simply because they are each underlaid by a lower boulder-clay. But, as we have seen, the upper boulder-clay of the Baltic coast-lands is underlaid not by one only, but by two, and in some places even by three other boulder-clays – phenomena which never present themselves in the regions not invaded by the last great Baltic glacier. Three or four boulder-clays occur in the coast-lands of the Baltic because those regions were overflowed successively by three or four separate ice-sheets. Only two boulder-clays are met with south and east of the Baltic Ridge, because the tracts lying south and south-east of that ridge were traversed by only two mers de glace– namely, by that of the epoch of maximum glaciation and by the less extensive ice-sheet of the next succeeding cold period. In the region between the Elbe and the mountains of middle Germany only one boulder-clay appears, because that region has never been invaded by more than one ice-sheet. The succession thus indicated may be tabulated as follows: —
1. Epoch of Earliest Baltic Glacier. Lowest boulder-clay of southern Sweden; lowest boulder-clay of Baltic provinces of Prussia; horizon of the Weybourn Crag.
2. Epoch of Greatest Mer de Glace. Lower boulder-clays of middle and southern Germany, central Russia, British Islands; second boulder-clay of Baltic provinces of Prussia.
3. Epoch of Lesser Mer de Glace. Upper boulder-clay of western and middle Germany, Poland, and west central Russia; upper boulder-clay of Britain; third boulder-clay of Baltic provinces of Prussia.
4. Epoch of Last Great Baltic Glacier. Upper boulder-clay and terminal moraines of Baltic coast-lands; district and valley-moraines of Highlands and Uplands of British Islands.
5. Epoch of Small Local Glaciers. Valley-moraines in mountainous regions of Britain, etc.
The evidence on which these conclusions are based is set forth at some length in a forthcoming re-issue of my Great Ice Age. – Nov. 1, 1892.]
XI.
The Geographical Evolution of Europe. 110
It is one of the commonplaces of geology that the Present is built up out of the ruins of the Past. Every rock beneath our feet has its story of change to tell us. Mountains, valleys, and plains, continents and islands, have passed through vicissitudes innumerable, and bear within them the evidence of a gradual development or evolution. Looking back through the vista of the past one sees the dry lands gradually separating from the ocean, and gathering together into continental masses according to a definite plan. It is this slow growth, this august evolution, carried on through countless æons, which most impresses the student of physical geology. The earth seems for the time as if endowed with life, and like a plant or animal to pass through its successive stages of development until it culminates in the present beautiful world. This conception is one of comparatively recent growth in the history of geological science. Hutton, the father of physical geology, had indeed clearly perceived that the dry lands of the globe were largely composed of the débris of former land-surfaces – that there had been alternate elevations and depressions of the earth’s crust, causing now sea and now land to predominate over given areas. But the facts known in this day could not possibly have suggested those modern ideas of geographical evolution, which are the outcome of the multifarious observation and research of later years. It is to Professor Dana, the eminent American geologist, that we are indebted for the first clear enunciation of the views which I am now about to illustrate. According to him the great oceanic basins and continental ridges are of primeval antiquity – their origin is older than that of our oldest sedimentary formations. It is not maintained that the present lands have always continued above the level of the sea. On the contrary, it can be proved that many oscillations of level have taken place within each continental area, by which the extent and outline of the land have been modified again and again. Notwithstanding such changes, however, the great continental ridges would appear to have persisted from the earliest geological times as dominant elevations of the earth’s crust. Some portions of these, as Dana remarks, may have been submerged for thousands of feet, but the continents have never changed places with the oceans.
I shall presently indicate the nature of the evidence by which it is sought to prove the vast age of our continental masses, but before doing so it will be well to give an outline of the facts which go to show that the oceanic depressions of the globe are likewise of primeval antiquity.
The memorable voyage of the Challenger has done much to increase our knowledge of the deep seas and the accumulations forming therein. The researches of the scientific staff of the expedition, and more particularly those of Mr. Murray, have indeed given a new impulse to the study of the larger questions of physical geology, and have lent strong support to the doctrine of the permanence of the oceanic basins and continental ridges. One of the most important facts brought before our attention by Mr. Murray is the absence of any land-derived materials from the sediments now gathering in the deeper abysses of the ocean. The coasts of continents and continental islands are strewn, as every one knows, with the wreck of the land – with gravel, sand, and mud, derived from the demolition of our rocks and soils. The coarser débris accumulates upon beaches and in shallow littoral waters, while the finer materials are swept further out to sea by tidal and other currents – the sediment being gradually sifted as it is borne outwards into deeper water, until only the finest mud and silt remain to be swept forward. As the floor of the ocean shelves down to greater depths the transporting power of currents gradually lessens, and finally land-derived sediment ceases to appear. Such terrigenous materials may be said to extend from the littoral zone down to depths of 2000 feet and more, and to a distance of 60 to 300 miles from shore. They are confined, therefore, to a comparatively narrow belt round the margins of continents and islands. And thus there are vast regions of the oceanic depressions over which no terrigenous or land-derived materials are accumulating. Instead of these we meet with a remarkable red clay and various kinds of ooze, made up largely of the shells of foraminifera, pelagic mollusca, and radiolarians, and the frustules of diatoms. The red clay is the most widely distributed of abysmal deposits. Indeed, it seems to form a certain proportion of all the deep-sea organic oozes, and may be said, therefore, to exist everywhere in the abysmal regions of the oceanic basins. It is extremely fine-grained, and owes its deep brown or red colour to the presence of the oxides of manganese and iron. Scattered through the deposit occur particles of various minerals of volcanic origin, together with lapilli and fragments of pumice, i. e., volcanic ejectamenta. Such materials may have been thrown out from terrestrial volcanoes and carried by the winds or floated by currents until they became water-logged and sank; or they may to some extent be the relics of submarine eruptions. Whatever may have been their immediate source, they are unquestionably of volcanic origin, and are not associated with any truly terrigenous sediment. The red clay is evidently the result of the chemical action of sea-water on volcanic products; and many facts conspire to show that its formation is an extremely slow process. Thus, remains of vertebrates, consisting of the ear-bones of whales, beaks of ziphius, and teeth of sharks, are often plentifully present, and there is no reason to suppose, as MM. Murray and Renard point out, that the parts of the ocean where these remains occur are more frequented by whales and sharks than other regions where similar relics are rarely or never dredged up. Of these remains some have all the appearance of having lain upon the sea-bottom for a very long time, for they belong to extinct species, and are either partially coated or entirely surrounded with thick layers of manganese-iron. In the same red clay occur small metallic spherules which are of cosmic origin – in other words, meteoric dust. The accumulation of all these substances in such relatively great abundance shows us that the oceanic basins have remained unchanged for a vast period of time, and assures us that the formation of the abysmal red clay is extremely slow.
When we come to examine the rocks which enter into the framework of our continents, we find that they may be roughly classed under these heads: —
1st, Terrestrial and Aqueous Rocks2d, Igneous Rocks3d, Crystalline SchistsBy far the largest areas of land are composed of rocks belonging to the first class. These consist chiefly of the more or less indurated sediments of ancient rivers, lakes, and seas – namely, conglomerate, sandstone, shale, limestone, etc. And now and again, interstratified with such aqueous beds, we meet with rocks of terrestrial origin, such as lignite, coal, and the débris of former glacial action. Now, most of our aqueous rocks have been accumulated in the sea, and thus we arrive at the conclusion that the present continental areas have from time to time been largely submerged – that the sea has frequently covered what are now the dry lands of the globe. But one remarkable fact stands out, and it is this: Nowhere amongst the sedimentary rocks of the earth’s crust do we meet with any ancient sediments which can be likened to the red clay now slowly accumulating in the deeper abysses of the ocean. There are no rocks of abysmal origin. Many of our limestones have undoubtedly formed in deep, clear water, but none of these is abysmal. Portions of Europe may now and again have been submerged for several thousand feet, but no part of this or any other continent, so far as we yet know, has within geological time been depressed to depths comparable to those of the present oceanic basins. Nay, by far the larger portions of our marine formations have accumulated in comparatively shallow water – sandstones and shales (sand and mud) being by far the most common kinds of rock that we encounter. In short, aqueous strata have, as a rule, been deposited at no great depth and at no great distance from dry land; the rocks are built up mostly of terrigenous material; and even the purer limestones and chalks, which we may suppose accumulated in seas of moderate depth, not infrequently contain some terrestrial relic which has been drifted out to sea, and afford other evidence to show that the nearest land was never very far away. Followed along their outcrop such rocks sooner or later become mixed and interbedded with ordinary sedimentary matter. Thus, for example, the thick carboniferous limestone of Wales and the Midlands of England must have accumulated in the clear water of a moderately deep sea. But when this limestone is traced north into Northumberland it begins to receive intercalations of sandstone and shale, which become more and more important, until in Scotland they form by much the larger portion of the series – the enormous thick limestones of the south being represented by only a few inconsiderable beds, included, along with seams of ironstone and coal, in a thick succession of sandstones and shales.
Of the igneous rocks and the crystalline schists I need not speak at present, but I shall have something to say about them before I have done.
Having learned that no truly abysmal rocks enter into the composition of our continents, of what kind of rocks, we may ask, are the islands composed? Well, some of those islands are built up of precisely the same materials as we find in the continents. This is the case with most islands which are not separated from continental areas by profoundly deep seas. Thus our own islands with their numerous satellites are geologically one with the adjacent continent. Their present separation is a mere accident. Were the European area, with the adjacent sea-bed, to be elevated for a few hundred feet we should find that Britain and Ireland form geologically part and parcel of the continent. And the same is the case with Nova Zembla and Spitzbergen in the north, and with the Mediterranean islands in the south. There is another large class of islands, however, which are characterised by the total absence of any of those sedimentary rocks of which, as I have just said, our continents and continental islands are chiefly built up. The islands referred to are scattered over the bosom of the great ocean, and are surrounded by profoundly deep water. Some are apparently composed entirely of coral, others are of volcanic origin, and yet others are formed partly of volcanic rock and partly of coral. Thus we have two distinct kinds of island: —
1st, Islands which have at one time evidently been connected with adjacent continents, and which are therefore termed continental islands; and
2d, Oceanic islands, which rise, as it were, from profound depths in the sea, and which have never formed part of the continents.
The fauna and flora of the former class agree with those of the neighbouring continents, although some modifications are met with, especially when the insulation has been of long standing. When such has been the case the species of plants and animals may be almost entirely distinct. Nevertheless, such ancient continental islands agree with those which have been separated in more recent geological times in containing both indigenous amphibians and mammals. Oceanic islands, on the other hand, contain no indigenous mammals or amphibians, their life consisting chiefly of insects and birds, and usually some reptiles – just such a fauna as might have been introduced by the influence of winds and of oceanic currents carrying driftwood.
Such facts, as have now been briefly summarised, point clearly to the conclusion that the oceanic basins and continental areas are of primeval antiquity. All the geological facts go to prove that abysmal waters have never prevailed over the regions now occupied by dry land; nor is there any evidence to show that continental land-masses ever existed in what are now the deepest portions of the ocean. The islets dotted over the surface of the Pacific and the other great seas are not the relics of a vast submerged continent. They are either the tops of submarine volcanic mountains, or they are coral structures founded upon the shoulders of degraded volcanoes and mountain-chains, and built up to the surface by the indefatigable labours of the humble polyp. We come then to the general conclusion that oceanic basins and intervening continental ridges are great primeval wrinkles in the earth’s crust – that they are due to the sinking down of that crust upon the cooling and contracting nucleus. These vast wrinkles had come into existence long before the formation of our oldest geological strata. All our rocks may, in short, be looked upon as forming a mere superficial skin covering and concealing the crystalline materials which no doubt formed the original surface of the earth’s crust.
Having premised so much, let me now turn to consider the geological history of our own Continent, and endeavour to trace out the various stages in its evolution. Of course I can only do so in a very brief and general manner; it is impossible to go into details. We shall find, however, that the history of the evolution of Europe, even when sketched in outline, is one full of instruction for students of physical geography, and that it amply bears out the view of the permanency of the greater features of the earth’s surface.
The oldest rocks that we know of are the crystalline schists and gneiss, belonging to what is called the Archæan system. The origin of these rocks is still a matter of controversy – some holding them to be part of the primeval crust of the globe, or the chemical precipitates of a primeval ocean, others maintaining that they are altered or metamorphosed rocks of diverse origin, a large proportion having consisted originally of aqueous or sedimentary rocks, such as sandstone and shale; while not a few are supposed to have been originally eruptive igneous rocks. According to some geologists, therefore, the Archæan rocks represent the earliest sediments deposited over the continental ridges. It is supposed that here and there those ridges rose above the surface of what may have been a boiling or highly-heated ocean, from whose waters copious chemical precipitations took place, while gravel and shingle gathered around the shores of the primeval lands. According to other writers, however, the Archæan rocks were probably accumulated under normal conditions. They consist, it is contended, partly of sediment washed down from some ancient land-surface, and distributed over the floor of an old sea (just as sediments are being transported and deposited in our own day), and partly of ancient igneous rocks. Their present character is attributed to subsequent changes, superinduced by heat and pressure, at a time when the masses in question were deeply buried under later formations, which have since been washed away. In a word, we are still quite uncertain as to the true origin of the Archæan rocks. Not infrequently they show a bedded structure, and in that respect they simulate the appearance of strata of sedimentary origin. It is very doubtful, however, whether this “bedded structure” is any evidence of an original aqueous arrangement. We know now that an appearance of bedding has been induced in originally amorphous rocks during great earth-movements. Granite masses, for example, have been so crushed and squeezed as to assume a bedded aspect, and a similar structure has been developed in many other kinds of rock subjected to enormous pressure. Whatever may have been the origin of the bedded structure of the Archæan rocks, it is certain that the masses have been tilted up and convoluted in the most remarkable manner. Hitherto they have yielded no unequivocal trace of organic remains – the famous Eozoon being now generally considered as of purely mineral origin. The physical conditions under which the Archæan gneiss and schist came into existence are thus quite undetermined, but geologists are agreed that the earliest land-surfaces, of the former existence of which we can be quite certain, were composed of rocks. And this brings us to the beginning of reliable geological history.