bannerbanner
Fragments of Earth Lore: Sketches & Addresses Geological and Geographical
Fragments of Earth Lore: Sketches & Addresses Geological and Geographicalполная версия

Полная версия

Fragments of Earth Lore: Sketches & Addresses Geological and Geographical

Язык: Английский
Год издания: 2017
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
24 из 35

The phenomena which I have thus briefly sketched suffice to show that the epoch of local glaciation is to be clearly distinguished from that of the latest general mer de glace. I have long suspected, indeed, that the two may have been separated by as wide an interval of time as that which divided the earlier from the later epoch of general glaciation. Again and again I have searched underneath the terminal moraines, in the faint hope of detecting interglacial accumulations. My failure to discover these, however, did not weaken my conviction, for it was only by the merest chance that interglacial beds could ever have been preserved in such places. I feel sure, however, that they must occur among the older alluvia of our Lowlands. Indeed, as I shall point out in the sequel, it is highly probable that they are already known, and that we have hitherto failed to recognise their true position in the glacial series.

Although we have no direct evidence to prove that a long interglacial epoch of mild conditions immediately preceded the advent of our local ice-sheets and large valley-glaciers, yet the indirect evidence is so strong that we seem driven to admit that such must have been the case. To show this I must briefly recapitulate what is now known as to the glacial succession on the Continent. It has been ascertained, then, that the Scandinavian ice has invaded the low-grounds of Germany on two separate occasions, which are spoken of by Continental geologists as the “first” and “second” glacial epochs. The earlier of these was the epoch of maximum glaciation, when the inland ice flowed south into Saxony, and overspread a vast area between the borders of the North Sea and the base of the Ural Mountains. This ice-sheet unquestionably coalesced with the mer de glace of the British Islands. Its bottom-moraine and the associated fluvio-glacial detritus are known in Germany as “Lower Diluvium,” and the various phenomena connected with it clearly show that the inland-ice radiated outwards from the high-grounds of Scandinavia. The terminal front of that vast mer de glace is roughly indicated by a line drawn from the south coast of Belgium round the north base of the Harz, and by Leipzig and Dresden to Krakow, thence north-east to Nijnii Novgorod, and further north to the head-waters of the Dvina and the shores of the Arctic Sea near the Tcheskaia Gulf.

The lower diluvium is covered in certain places by interglacial deposits and an overlying upper diluvium – a succession clearly indicative of climatic changes. In the interglacial beds occur remains of Elephas antiquus and other Pleistocene mammals, and a flora which denotes a genial temperate climate. One of the latest discoveries of interglacial remains is that of two peat-beds lying between the lower and upper diluvium near Grünenthal in Holstein.79 Among the abundant plant-relics are pines and firs (no longer indigenous to Schleswig-Holstein), aspen, willow, white birch, hazel, hornbeam, oak, and juniper. Associated with these are Ilex and Trapa natans, the presence of which, as Dr. Weber remarks, betokens a climate like that of western middle Germany. Amongst the plants is a water-lily, which occurs also in the interglacial beds of Switzerland, but is not now found in Europe. The evidence furnished by this and other interglacial deposits in north Germany shows that, after the ice-sheet of the lower diluvium had melted away, the climate became as temperate as that now experienced in Europe. Another recent find of the same kind80 is the “diluvial” peat, etc., of Klinge, in Brandenburg, described by Professor Nehring. These beds have yielded remains of elk (Cervus alces), rhinoceros (species not determined), a small fox (?), and Megaceros. This latter is not the typical great Irish deer, but a variety (C. megaceros, var. Ruffii, Nehring). The plant-remains include pine, fir (Picea excelsa), hornbeam, warty birch (Betula verrucosa), various willows (Salix repens, S. aurita, S. caprea [?], S. cinerea), hazel, poplar (?), common holly, etc. It is worthy of note that here also the interglacial water-lily (Cratopleura) of Schleswig-Holstein and Switzerland makes its appearance. Dr. Weber writes me that the facies of this flora implies a well-marked temperate insular climate (Seeklima). The occurrence of holly in the heart of the Continent, where it no longer grows wild, is particularly noteworthy. The evidence furnished by such a flora leads one to conclude that at the climax of the genial interglacial epoch, the Scandinavian snow-fields and glaciers were not more extensive than they are at present.

The presence of the upper diluvium, however, proves that such genial conditions eventually passed away, and that an ice-sheet again invaded north Germany. But this later invasion was not on the same scale as that of the preceding one. The geographical distribution of the upper diluvium and the position of large terminal moraines put this quite beyond doubt. The boulder-clay in question spreads over the Baltic provinces of Germany, extending south as far as Berlin,81 and west into Schleswig-Holstein and Denmark. At the climax of this later cold epoch glaciers occupied all the fiords of Norway, but did not advance beyond the general coast-line. Norway at that time must have greatly resembled Greenland – the inland-ice covering the interior of the country, and sending seawards large glaciers that calved their icebergs at the mouths of the great fiords. In the extreme south, however, the glaciers did not quite reach the sea, but piled up large terminal moraines on the coast-lands, which may be followed thence into Sweden in an easterly direction by the lower end of Lake Wener and through Lake Wetter. A similar belt of moraines marks out the southern termination of the ice-sheet in Finland. Between Sweden and Finland lies the basin of the Baltic, which, at the epoch in question was filled with ice, forming a great Baltic glacier. This glacier overflowed the Öland Islands, Gottland, and Öland, fanning out as it passed towards the south-west and west, so as to invade on the south the Baltic provinces of Germany, while in the north it traversed the southern part of Scania, and overwhelmed the Danish islands as it spread into Jutland and Schleswig-Holstein. The course of this second ice-sheet is indicated by the direction of transport of erratics, etc., and by the trend of rock-striæ and roches moutonnées, as well as by the position of its terminal and lateral moraines.

Such, then, is the glacial succession which has been established by geologists in Scandinavia, north Germany, and Finland. The occurrence of two glacial epochs, separated by a long interval of temperate conditions, has been proved. The evidence, however, does not show that there may not have been more than two glacial epochs. There are certain phenomena, indeed, connected with the glacial accumulations of the regions in question which strongly suggest that the succession of changes was more complex than is generally understood. Several years ago Dr. A. G. Nathorst adduced evidence to show that a great Baltic glacier, similar to that underneath which the upper diluvium was amassed, existed before the advent of the vast mer de glace of the so-called “first glacial epoch,”82 and his observations have been confirmed and extended by H. Lundbohm.83 The facts set forth by them prove beyond doubt that this early Baltic glacier smoothed and glaciated the rocks in southern Sweden in a direction from south-east to north-west, and accumulated a bottom-moraine whose included erratics are equally cogent evidence as to the trend of glaciation. That old moraine is overlaid by the lower diluvium —i. e., the boulder-clay, etc., of the succeeding vast mer de glace that flowed south to the foot of the Harz – the transport of the stones in the superjacent clay indicating a movement from NNE. to SSW., or nearly at right angles to the trend of the earlier Baltic glacier. It is difficult to avoid the conclusion that we have here to do with the products of two distinct ice-epochs. But hitherto no interglacial deposits have been detected between the boulder-clays in question. It might, therefore, be held that the early Baltic glacier was separated by no long interval of time from the succeeding great mer de glace, but may have been merely a stage in the development of the latter. It is at all events conceivable that before the great mer de glace attained its maximum extension, it might have existed for a time as a large Baltic glacier. I would point out, however, that if no interglacial beds had been recognised between the lower and the upper diluvium, geologists would probably have considered that the last great Baltic glacier was simply the attenuated successor of the preceding continental mer de glace. But we know this was not so; the two were actually separated by a long epoch of genial temperate conditions.

There are certain other facts that may lead us to doubt whether in the glacial phenomena of the Baltic coast-lands we have not the evidence of more than two glacial epochs. Three, and even four, boulder-clays have been observed in east and west Prussia. They are separated, the one from the other, by extensive aqueous deposits, which are sometimes fossiliferous. Moreover, the boulder-clays in question have been followed continuously over considerable areas. It is quite possible, of course, that all those boulder-clays may be the product of one epoch, laid down during more or less considerable oscillations of an ice-sheet. In this view of the case the intercalated aqueous deposits would indicate temporary retreats, while the boulder-clays would represent successive re-advances of one and the same mer de glace. On the other hand, it is equally possible, if not more probable, that the boulder-clays and intercalated beds are evidence of so many separate glacial and interglacial epochs. We cannot yet say which is the true explanation of the facts. But these being as they are, we may doubt if German glacialists are justified in so confidently maintaining that their lower and upper diluvial accumulations are the products of the “first” and “second” glacial epochs. Indeed, as I shall show presently, the upper diluvium of north Germany and Finland cannot represent the second glacial epoch of other parts of Europe.

For a long time it has been supposed that the glacial deposits of the central regions of Russia were accumulated during the advance and retreat of one and the same ice-sheet. In 1888, however, Professor Pavlow brought forward evidence to show that the province of Nijnii Novgorod had been twice invaded by a general mer de glace. During the first epoch of glaciation the ice-sheet overflowed the whole province, while only the northern half of the same region was covered by the mer de glace of the second invasion. Again, Professor Armachevsky has pointed out that in the province of Tchernigow two types of glacial deposits appear, so unlike in character and so differently distributed that they can hardly be the products of one and the same ice-sheet. But until recently no interglacial deposits had been detected, and the observations just referred to failed, therefore, to make much impression. The missing link in the material evidence has now happily been supplied by M. Krischtafowitsch.84 At Troïzkoje, in the neighbourhood of Moscow, occur certain lacustrine formations which have been long known to Russian geologists. These have been variously assigned to Tertiary, lower glacial, post-glacial, and pre-glacial horizons. They are now proved, however, to be of interglacial age, for they rest upon and are covered by glacial accumulations. Amongst their organic remains are oak (Quercus pedunculata), alder (Alnus glutinosa, A. incana), white birch, hazel, Norway maple (Acer platanoides), Scots fir, willow, water-lilies (Nuphar, Nymphæa), mammoth, pike, perch, Anadonta, wing-cases of beetles, etc. The character of the plants shows that the climate of central Russia was milder and more humid than it is to-day.

It is obvious that the upper and lower glacial deposits of central Russia cannot be the equivalents of the upper and lower diluvium of the Baltic coast-lands. The upper diluvium of those regions is the bottom-moraine of the so-called great Baltic glacier. At the time that glacier invaded north Germany, Finland was likewise covered with an ice-sheet, which flowed towards the south-east, but did not advance quite so far as the northern shores of Lake Ladoga. A double line of terminal moraines, traced from Hango Head on the Gulf of Finland, north-east to beyond Joensuu, puts this beyond doubt.85 The morainic deposits that overlie the interglacial beds of central Russia cannot, therefore, belong to the epoch of the great Baltic glacier. They are necessarily older. In short, it is obvious that the upper and lower glacial accumulations near Moscow must be on the horizon of the lower diluvium of north Germany. And if this be so, then it is clear that the latter cannot be entirely the product of one and the same mer de glace. When the several boulder-clays described by Schröder and others as occurring in the Baltic provinces of Germany are reinvestigated, they may prove to be the bottom-moraines of as many distinct and separate glacial epochs.

It may be contended that the glacial and interglacial deposits of central Russia are perhaps only local developments – that their evidence may be accounted for by the oscillations of one single mer de glace. This explanation, as already pointed out, has been applied to the boulder-clays and intercalated aqueous beds of the lower diluvium of north Germany, and the prevalent character of the associated organic remains makes it appear plausible. It is quite inapplicable, however, to the similar accumulations in central Russia. During the formation of the freshwater beds of Troïzkoje, no part of Russia could have been occupied by an ice-sheet; the climate was more genial and less “continental” than the present. Yet that mild interglacial epoch was preceded and succeeded by extremely arctic conditions. It is impossible that such excessive changes could have been confined to central Russia. Germany, and indeed all northern and north-western Europe, must have participated in the climatic revolutions.

So far, then, as the evidence has been considered, we may conclude that three glacial and two interglacial epochs at least have been established for northern Europe. If this be the case, then a similar succession ought to occur in our own islands; and a little consideration of the evidence already adduced will suffice to show that it does. It will be remembered that the lower and upper boulder-clays of the British Islands are the bottom-moraines of two separate and distinct ice-sheets, each of which in its time coalesced on the floor of the North Sea with the inland-ice of Scandinavia. It is obvious, therefore, that our upper boulder-clay cannot be the equivalent of the upper diluvium of the Baltic coast-lands, of Sweden, Denmark, and Schleswig-Holstein. De Geer and others have shown that while the great Baltic glacier was accumulating the upper diluvium of North Germany, etc., the inland-ice of Norway calved its icebergs at the mouths of the great fiords. Thus, during the so-called “second” glacial epoch of Scandinavian and German geologists, the Norwegian inland-ice did not coalesce with any British mer de glace. The true equivalent in this country of the upper diluvium is not our upper boulder-clay, but the great valley-moraines of our mountain-regions. It is our epoch of large valley-glaciers which corresponds to that of the great Baltic ice-flow. Our upper and lower boulder-clays are on the horizon of the lower diluvium of Germany and the glacial deposits of central Russia.

It will now be seen that the evidence in Britain is fully borne out by what is known of the glacial succession in the corresponding latitudes of the Continent. I had inferred that our epoch of large valley-glaciers formed a distinct stage by itself, and was probably separated from that of the preceding ice-sheet by a prolonged interval of interglacial conditions. One link in the chain of evidence, however, was wanting: I could not point to the occurrence of interglacial deposits underneath the great valley-moraines. But these, as we have seen, form a well-marked horizon on the Continent, and we cannot doubt that a similar interglacial stage obtained in these islands. We may feel confident, in fact, that genial climatic conditions supervened on the dissolution of the last great mer de glace in Britain, and that the subsequent development of extensive snow-fields and glaciers in our mountain-regions was contemporaneous with the appearance of the last great Baltic glacier.

We need not be surprised that interglacial beds should be well developed underneath the bottom-moraine of that great glacier, while they have not yet been recognised below the corresponding morainic accumulations of our Highlands and Uplands. The conditions in the low-grounds of the Baltic coast-lands favoured their preservation, for the ice in those regions formed a broad mer de glace, under the peripheral areas of which sub-glacial erosion was necessarily at a minimum and the accumulation at a maximum. In our Scottish mountain-valleys, however, the very opposite was the case. The conditions obtaining there were not at all comparable to those that characterised the low-grounds of northern Germany, etc., but were quite analogous to those of Norway, where, as in our own mountain-regions, interglacial beds are similarly wanting. It is quite possible, however, that patches of such deposits may yet be met with underneath our younger moraines, and they ought certainly to be looked for. But whether they occur or not in our mountain-valleys, it is certain that some of the older alluvia of our Lowlands must belong to this horizon. Hitherto all alluvial beds that overlie our upper boulder-clay have been classified as post-glacial; but since we have ascertained that our latest mer de glace was succeeded by genial interglacial conditions, we may be sure that records of that temperate epoch will yet be recognised in such Lowland tracts as were never reached by the glaciers of the succeeding cold epoch. Hence, I believe that some of our so-called “post-glacial” alluvia will eventually be assigned to an interglacial horizon. Amongst these may be cited the old peat and freshwater beds that rest upon the upper boulder-clay at Hailes Quarry, near Edinburgh. To the same horizon, in all probability, belong the clays, with Megaceros, etc., which occur so frequently underneath the peat-bogs of Ireland. An interesting account of these was given some years ago by Mr. Williams,86 who, as a collector of Megaceros remains, had the best opportunity of ascertaining the nature of the deposits in which these occur. He gives a section of Ballybetagh Bog, nine miles south-east of Dublin, which is as follows: —

1. Boulder-clay2. Fine tenacious clay, without stones3. Yellowish clay, largely composed of vegetable matter4. Brownish clay, with remains of Megaceros5. Greyish clay6. Peat

The beds overlying the boulder-clay are evidently of lacustrine origin. The fine clay (No. 2), according to Mr. Williams, is simply reconstructed boulder-clay. After the disappearance of the mer de glace the land would for some time be practically destitute of any vegetable covering, and rain would thus be enabled to wash down the finer ingredients of the boulder-clay that covered the adjacent slopes, and sweep them into the lake. The clay formed in this way is described as attaining a considerable thickness near the centre of the old lake, but it thins off towards the sides. The succeeding bed (No. 3) consists so largely of vegetable débris that it can hardly be called a clay. Mr. Williams describes it as a “bed of pure vegetable remains that has been ages under pressure.” He notes that there is a total absence in this bed of any tenacious clay like that of the underlying stratum, and infers, therefore, that the rainfall during the growth of the lacustrine vegetation was not so great as when the subjacent clay was being accumulated. The remains of Megaceros occur resting on the surface of the plant-bed and at various levels in the overlying brownish clay, which attains a thickness of three to four feet. The latter is a true lacustrine sediment, containing a considerable proportion of vegetable matter, interstratified with seams of clay and fine quartz-sand. According to Mr. Williams, it was accumulated under genial or temperate climatic conditions like the present. Between this bed and the overlying greyish clay (from 30 inches to 3 feet thick) there is always in all the bog deposits examined by Mr. Williams a strongly-marked line of separation. The greyish clay consists exclusively of mineral matter, and has evidently been derived from the disintegration of the adjacent granitic hills. Mr. Williams is of opinion that this clay is of aqueo-glacial formation. This he infers from its nature and texture, and from its abundance. “Why,” he asks, “did not this mineral matter come down in like quantity all the time of the deposit of the brown clay which underlies it? Simply because, during the genial conditions which then existed, the hills were everywhere covered with vegetation; when the rain fell it soaked into the soil, and the clay being bound together by the roots of the grasses, was not washed down, just as at the present time, when there is hardly any degradation of these hills taking place.” He mentions, further, that in the grey clay he obtained the antler of a reindeer, and that in one case the antlers of a Megaceros, found embedded in the upper surface of the brown clay, immediately under the grey clay, were scored like a striated boulder, while the under side showed no markings. Mr. Williams also emphasises the fact that the antlers of Megaceros frequently occur in a broken state – those near the surface of the brown clay being most broken, while those at greater depths are much less so. He shows that this could not be the result of tumultuous river-action – the elevation of the valley precluding the possibility of its receiving a river capable of producing such effects. Moreover, the remains show no trace of having been water-worn, the edges of the teeth of the great deer being as sharp as if the animal had died but yesterday. Mr. Williams thinks that the broken state of the antlers is due to the “pressure of great masses of ice on the surface of the clay in which they were embedded, the wide expanse of the palms of the antlers exposing them to pressure and liability to breakage; and even, in many instances, when there was 12 or 14 inches in circumference of solid bone almost as hard and sound as ivory, it was snapped across.” It is remarkable that in this one small bog nearly one hundred heads of Megaceros have been dug up.

Mr. Williams’ observations show us that the Megaceros-beds are certainly older than the peat-bogs with their buried timber. When he first informed me of the result of his researches (1880), I did not believe the Megaceros-beds could be older than the latest cold phase of the Ice Age. I thought that they were later in date than our last general mer de glace, and I think so still, for they obviously rest upon its ground-moraine. But since I now recognise that our upper boulder-clay is not the product of the last glacial epoch, it seems to me highly probable that the Megaceros-beds are of interglacial age – that, in short, they occupy the horizon of the interglacial deposits of north Germany, etc. The appearances described by Mr. Williams in connection with the “grey clay” seem strongly suggestive of ice-action. Ballybetagh Bog occurs at an elevation of 800 feet above the sea, in the neighbourhood of the Three Rock Mountain (1479 feet), and during the epoch of great valley-glaciers the climatic conditions of that region must have been severe. But without having visited the locality in question I should hesitate to say that the phenomena necessarily point to local glaciation. Probably frost, lake-ice, and thick accumulations of snow and névé might suffice to account for the various facts cited by Mr. Williams.

I have called special attention to these Irish lacustrine beds, because it is highly probable that the post-glacial age of similar alluvia occurring in many other places in these islands has hitherto been assumed and not proved. Now that we know, however, that a long interglacial stage succeeded the disappearance of the last general mer de glace, we may feel sure that the older alluvia of our Lowland districts cannot belong exclusively to post-glacial times. The local ice-sheets and great glaciers of our “third” glacial epoch were confined to our mountain-regions; and in the Lowlands, therefore, which were not invaded, we ought to have the lacustrine and fluviatile accumulations of the preceding interglacial stage. A fresh interest now attaches to our older alluvia, which must be carefully re-examined in the new light thus thrown upon them.

На страницу:
24 из 35