
Полная версия
Fragments of Earth Lore: Sketches & Addresses Geological and Geographical
In Cainozoic times, as we have seen, the last great elevation of the Alps was effected – an elevation which can hardly have been due to any other cause than the more or less abrupt depression of the earth’s crust under the Mediterranean basin. The area of that sea is now much less considerable than it was in Tertiary times – a change due in part to silting up, but chiefly perhaps to the sinking down of its bed to profounder depths.
Thus we may conclude that from a very early period – a period ante-dating the formation of our oldest fossiliferous strata – the physical structure of our Continent had already been planned. The dominant features of the primeval continental ridge are those which have endured through all geological time. They are the lines along which the beautiful lands in which we dwell have been constructed. Tilted and convoluted, broken and crushed by myriad earth-movements – scarred, furrowed, worn and degraded by the frosts, the rains, the rivers, and the seas of countless ages – the rocks of our Continent are yet eloquent of design. Where the ignorant sees nothing save confusion and discord, the thoughtful student beholds everywhere the evidence of a well-ordered evolution. Such is the conclusion to which we are led by all geological research.
XII.
The Evolution of Climate. 113
One of the most interesting questions with which geological science has to deal is that of the evolution of climate. Although there is no general agreement as to how former climatic fluctuations came about, yet the prevalent opinion is that in the past, just as in the present, the character of the climate must have depended mainly on latitude and the relative position of the great land- and water-areas. This was the doctrine taught by Lyell, and its cogency none will venture to dispute. It is true he postulated a total redistribution of oceans and continents – a view which the progress of science has shown to be untenable. We can no longer speculate with him on the possibility of all the great land-areas having been grouped at one time round the equator, and at some other period about the poles. On the contrary, the evidence goes to show that the continents have never changed places with the ocean – that the dominant features of the earth’s crust are of primeval antiquity, and ante-date the oldest of the fossiliferous formations. The whole question of climatic changes, therefore, must be reconsidered from the point of view of the modern doctrine of the permanency of continental and oceanic areas.
But before proceeding to this discussion, it may be well to glance for a moment at the evidence from which it has been inferred that the climate of the world has varied. Among the chief proofs of climatic fluctuations are the character and the distribution of former floras and faunas. It is true, fossils are, for the most part, relics of extinct forms, and we cannot assert of any one of these that its environment must have been the same as that of some analogous living type. But, although we can base no argument on individual extinct forms, it does not follow that we are precluded from judging of the conditions under which a whole suite of extinct organisms may have lived. Doubtless, we can only reason from the analogy of the present; but, when we take into account all the forms met with in some particular geological system, we seem justified in drawing certain conclusions as to the conditions under which they flourished. Thus, should we encounter in some great series of strata many reef-building corals, associated with large cephalopods and the remains of tree-ferns and cycads, which last from their perfect state of preservation could not have drifted far before they became buried in sediment, we should surely be entitled to conclude that the strata in question had been deposited in the waters of a genial sea, and that the neighbouring land likewise enjoyed a warm climate. Again should a certain system, characterised by the presence of some particular and well-marked flora and fauna, be encountered not only in sub-tropical and temperate latitudes but also far within the Arctic Circle, we should infer that such a flora and fauna lived under climatic conditions of a very different kind from any that now exist. The very presence, in the far north, of fossils having such a geographical distribution would show that the temperature of polar seas and lands could not have been less than temperate. When such broad methods of interpretation are applied to the problems suggested by former floras and faunas, we seem compelled to conclude that the conditions which determined the distribution of life in bygone ages must have been, upon the whole, more uniform and equable than they are now. It is unnecessary that I should go into detailed proof; but I may refer, by way of illustration, to what is known of the Silurian and Carboniferous fossils of the arctic regions. Most of these occur also in the temperate latitudes of Europe and North America, while many are recognised as distinctive types of the same strata nearly all the world over. As showing how strongly the former broad distribution of life-forms is contrasted with their present restricted range, Professor Heilprin has cited the Brachiopoda. Taking existing species and varieties as being 135 in number, he remarks that “there is scarcely a single species which can be said to be strictly cosmopolitan in its range, although not a few are very widely distributed; and, if we except boreal and hyperboreal forms, but a very limited number whose range embraces opposite sides of the same ocean. On the other hand, if we accept the data furnished by Richthofen concerning the Chinese Brachiopoda we find that out of a total of thirteen Silurian and twenty-four Devonian species, no less than ten of the former and sixteen of the latter recur in the equivalent deposits of western Europe: and, further, that the Devonian species furnish eleven, or nearly 50 per cent. of the entire number, which are cosmopolitan or nearly so. Again, of the twenty-five Carboniferous species, North America holds fully fifteen, or 60 per cent., and a very nearly equal number are cosmopolitan.” The same palæontologist reminds us that by far the greater number of fossils which occur in the Palæozoic strata of Australia are present also in regions lying well within the limits of the north temperate zone. “In fact,” he continues, “the relationship between this southern fauna and the faunas of Europe and North America is so great as to practically amount to identity.”
But, side by side with such evidence of broad distribution, we are confronted with facts which go to show that, even at the dawn of Palæozoic times, the oceanic areas at all events had their more or less distinct life-provinces. While many of the old forms were cosmopolitan, others were apparently restricted in their range. It would be strange, indeed, had it been otherwise; for, however uniform the climatic conditions may have been, still that uniformity was only comparative. An absolutely uniform world-climate is well-nigh inconceivable. All we can maintain is that the conditions during certain prolonged periods were so equable as to allow of the general diffusion of species over vastly greater areas than now; and that such conditions extended from low latitudes up to polar regions. Now, among the chief factors which in our day determine the limitation of faunas and floras, we must reckon latitude and the geographical position of land and water. What, then, it may be asked, were the causes which allowed of the much broader distribution of species in former ages?
It is obvious that before a completely satisfactory answer to that question can be given, our knowledge of past geographical conditions must be considerably increased. If we could prepare approximately correct maps and charts to indicate the position of land and sea during the formation of the several fossiliferous systems, we should be able to reason with some confidence on the subject of climate. But, unfortunately, the preparation of such correct maps and charts is impossible. The data for compilations of the kind required are still inadequate, and it may well be doubted whether, in the case of the older systems, we shall ever be able to arrive at any detailed knowledge of their geographical conditions. Nevertheless, the geological structure of the earth’s crust has been so far unravelled as to allow us to form certain general conceptions of the conditions that must have attended the evolution of our continents. And it is with such general conceptions only that I have at present to deal.
I said a little ago that the question of geological climates must now be considered from the point of view of the permanency of the great dominant features of the earth’s crust. I need not recapitulate the evidence upon which Dana and his followers have based this doctrine of the primeval antiquity of our continental and oceanic areas. It is enough if I remind you that by continental areas we simply mean certain extensive regions in which elevation has, upon the whole, been in excess of depression; by oceanic area, on the other hand, is meant that vast region throughout which depression has exceeded elevation. Thus, while the area of permanent or preponderating depression has, from earliest geological times, been occupied by the ocean, the continental areas have been again and again invaded by the sea – and even now extensive portions are under water. It is not only the continental dry land, therefore, but all the bordering belt of sea-floor which does not exceed 1000 fathoms or so in depth, that must be included in the region of dominant elevation. Were the whole of this region to be raised above the level of the sea, the present continents would become connected so as to form one vast land-mass, or continental plateau. (D, Plate IV.)
All the sedimentary strata with which we are acquainted have been accumulated over the surface of that great plateau, and consequently are of comparatively shallow-water origin. They show us, in fact, that at no time in geological history has that plateau ever been drowned in depths at all comparable to those of the deeper portions of our oceanic troughs. The stratified rocks teach us, moreover, that the present land-areas have been gradually evolved, and that, notwithstanding many oscillations of level, these areas have continued to increase in extent – so that there is probably more land-surface now than at any previous era in the history of our globe. To give even a meagre outline of the evidence bearing upon this interesting subject is here impossible. All that I can do is to indicate very briefly some of the general results to which that evidence seems to lead.
The oldest rocks with which we are acquainted are the so-called Archæan schists114 But these have hitherto yielded no unequivocal traces of organic life, and as their origin is still doubtful, it would obviously be futile to speculate upon the geographical conditions of the earth’s surface at the time of their formation. Reliable geological history only begins with the fossiliferous strata of the Palæozoic era. From these we learn that in the European area the Archæan rocks of Britain, Scandinavia, and Finland formed, at that time, the most extensive tract of dry land in our part of the world. How far beyond the present limits of Europe that ancient northern land extended we cannot tell; but it probably occupied considerable regions which are now submerged in the waters of the Arctic Ocean. Further south, the continental plateau appears to have been, for the most part, overflowed by a shallow sea, the surface of which was dotted by a few islands of Archæan rocks, occupying the sites of what are now some of the hills of middle Germany and the Archæan districts of France and the Iberian Peninsula. Archæan rocks occur likewise in Corsica and Sardinia, and again in Turkey: they also form the nuclei of most of the great European mountain-chains, as the Pyrenees, the Alps, the Carpathians, and the Urals. These areas of crystalline schists may not, it is true, have existed as islands at the beginning of Palæozoic times, for they were doubtless ridged up by successive elevations at later dates; but their very presence as mountain-nuclei is sufficient to show that at a very early geological period, the continental plateau could not have been covered by any great depth of sea. We can go further than this – for all the evidence points to the conclusion that, even so far back as Cambrian times, the dominant features of the present European continent had been, as it were, sketched out. Looked at broadly, that part of the great continental plateau upon which our European lands have been gradually built up may be said to be traversed from west to east by two wide depressions, separated by an intervening elevated tract. The former of these depressions corresponds to the great Central Plain which passes through the south of England, north-east of France, and the Low Countries, whence it sweeps through Germany, to expand into the extensive low-grounds of central and northern Russia. The southern depression embraces the maritime tracts of the Mediterranean, and the regions which that sea covers. To these dominant features all the others are of subordinate importance. The two great troughs are belts of depression in the continental plateau itself. The northern one is of extreme antiquity – it is older, at all events, than the Cambro-Silurian period. Even at that distant date its southern limits were marked out by ridges of Archæan rock, which, as I have said, seem to have formed islands in what is now central Europe. It was probably always the shallower depression of the two, for we have evidence to show that again and again, in Mesozoic and later times, the sea that overflowed what are now the central lowlands of Europe was of less considerable depth than that which occupied the Mediterranean trough.
If we turn to North America, we find similar reason to conclude, with Professor Dana, that the general topography of that region had likewise been foreshadowed as far back as the beginning of the Palæozoic era. Dana tells us that even then the formation of its chief mountain-chains had been commenced, and its great intermediate basins were already defined. The oldest lands of North America were built up, as in Europe, of azoic rocks, and were grouped chiefly in the north. Archæan masses extend over an enormous region, from the shores of the Arctic Ocean down to the great lake country, and they are seen likewise in Greenland and many of the Arctic islands. They appear also in the long mountain-chains that run parallel with the coast-lines of the Continent. In a word, the present distribution of the Archæan rocks, and their relation to overlying strata, lead to the belief that in North America, just as in Europe, they form the foundation-stones of that continent, and stretch continuously throughout its whole extent.
We know comparatively little of the geology of the other great land-masses of the globe, but from such evidence as we have there is reason to believe that these in their general structure have much the same story to tell as Europe and North America. In South America, Archæan rocks extend over vast areas in the east and north-east, and reappear in the lofty mountain-chains of the Pacific border. They have been recognised also in various parts of Africa, alike in the north and east, in the interior, and in the west and south. In Asia, again, they occupy wide areas in the Indian Peninsula; they are well developed in the Himalaya, while in China and the mountains and plateaux of central Asia, azoic rocks, which are probably of Archæan age, are well developed. The crystalline schists, which cover extensive tracts in Australia and in the northern island of New Zealand, have also been referred to the same age. Thus, all the world over, Archæan rocks seem to form the surface of the ancient continental plateau upon which all other sedimentary strata have been accumulated. And in every region where Palæozoic rocks occur, we have evidence to prove that at the time these last were formed vast areas of the old continental plateau were under water.
The geological structure of the Palæozoic tracts of Europe and America has shown us that, during the protracted period of their accumulation, and notwithstanding many oscillations of level, the land-surface continued to increase. The same growth of dry land characterised Mesozoic and Cainozoic times – the primeval depressions that traverse the continental plateau became more and more silted up, and the sea eventually disappeared from extensive regions which it had overflowed in Palæozoic ages. This land-growth, of course, was not everywhere continuous. Again and again, throughout wide tracts, depression was in excess of sedimentation and elevation. Even at the present time, broad tracts of what was once dry land are submerged. But the simple fact that the younger fossiliferous strata do not extend over such wide areas as the older systems, is sufficient proof that our land-masses have all along tended to grow, and to become more and more consolidated.
Reference has already been made to the remarkable fact that no abysmal accumulations have yet been detected amongst the stratified rocks of the earth’s crust. Ordinary clastic rocks, such as shale, sandstone, and conglomerate – altered or unaltered, as the case may be – form by far the largest proportion of our aqueous strata, and speak to us only of shallow waters. It is true that some of our limestones must have accumulated in moderately deep clear seas, yet none of these limestones is of abysmal origin. They prove that portions of the continental plateau have now and again been submerged for several thousand feet, but afford no evidence of depths comparable to those of the present oceanic basins. The enormous thickness obtained by the sedimentary strata can only be explained on the supposition that deposition took place over a gradually sinking area. And thus it can be shown that, within the continental plateau, movements of depression have been carried on more or less continuously during vast periods of time – and yet so gradually, that sedimentation was able to keep pace with them. Take, for example, the Cambrian strata of Wales and Shropshire – all, apparently, shallow-water deposits – which attain a thickness of 30,000 feet, or thereabout; or the Silurian strata of the same regions, which are not much less than 20,000 feet thick; and similar great depths of sedimentary rocks might be cited from North America. Passing on to later periods, we find like evidence of long-continued depression in the thick sediments of the younger Palæozoic systems. It is noteworthy, however, that when we come down to still later ages, the movements of depression, as measured by the depths of the strata, appear to have become less and less extensive and profound. Each such movement of depression was eventually brought to a close by one or more movements of upheaval – slowly or more rapidly effected, as the case may have been. Here, then, we are confronted with the striking fact that the continental plateau has, from time to time, sunk down over wide areas to depths exceeding those of existing oceans, and yet at so slow a rate, that sedimentation prevented the depressed regions from becoming abysmal. It is obvious, then, that such areas are now dry land simply because, in the long-run, sedimentation and upheaval have been in excess of depression.
And yet, notwithstanding the numerous upheavals which have taken place over the continental plateau, these have succeeded in doing little more than drain away the sea more or less completely from the great primeval depressions by which that plateau is traversed. If it be true, therefore, that the continental plateau owes its existence to the sinking down of the earth’s crust within the oceanic basins – if the continents have been squeezed up by the tangential thrusts exerted by the sinking areas that surround them – then it follows that while lands have been gradually extending over the continental plateau, the bed of the ocean has been sinking to greater and greater depths.
If this general conclusion holds good, it is obvious that the oceanic troughs of early geological times could not have been so deep as they are now. During the Palæozoic period, the most continuous areas of dry land, as we have seen, were distributed over the northern parts of our hemisphere, while, further south, groups of islands indicated the continuation of the continental plateau. Doubtless South America, Africa, Asia, and Australia were, at that distant date, represented by similar detached areas of dry land. In a word, the primeval continental plateau was still largely under water. Judging from the character and broad distribution of the Palæozoic marine faunas the temperature of the sea was wonderfully uniform. There is certainly nothing to indicate the existence of such climatic zones as those of the present. We know very little of the terrestrial life of early Palæozoic times – the Cambro-Silurian strata are essentially marine. Land-plants, however, become more numerous in the Old Red Sandstone, and, as every one knows, they abound in the succeeding Carboniferous and Permian systems. And the testimony of these floras points to the same conclusion as that furnished by the marine faunas. The Carboniferous floras of the arctic regions, and of temperate Europe and America, not only have the same facies, but a considerable number of the species is common to both areas; while many European species occur in the Carboniferous strata of Australia and other distant lands. This common facies, and the presence of numerous cosmopolitan forms, surely indicate the former prevalence of remarkably uniform climatic conditions. The conditions, of course, need not – indeed, could not – have been absolutely uniform. At present the various climates which our globe experiences depend upon the amount of heat received directly and indirectly from the sun – oceanic and aërial currents everywhere modifying the results that are due to latitude. It cannot have been otherwise in former times. In all ages the tropics must have received more direct sun-heat than temperate and polar regions; and however much the climatic conditions of the Palæozoic era may have differed from the present – however uniformly temperature may have been distributed – still, as I have said, absolute uniformity was impossible. It was doubtless owing to the fact that the dry lands of Palæozoic times were not only much less extensive than now, but more interrupted, straggling, and insular, that the climate of the globe was so equable. Under such geographical conditions, great oceanic currents would have a much freer course than is now possible, and warm water would find its way readily across wide regions of the submerged continental plateau into the highest latitudes. The winds blowing athwart the land would everywhere be moist and warm, and no such marked differences of temperature, such as now obtain, would distinguish the arctic seas from those of much lower latitudes. At the same time, the comparatively shallow water overlying the submerged areas of the continental plateau would favour the distribution of species, and thus bring about that wide distribution of cosmopolitan forms and general similarity of facies, which are such marked features of the Palæozoic faunas. It is even quite possible that migration may have taken place here and there across the great oceanic depression itself; for it may well be doubted whether, at so early a period, the depression had sunk down to its present depth below the level of the continental plateau.
Yet, notwithstanding such facilities for migration, and the consequent similarity of facies I have referred to, the Palæozoic faunas of different regions have usually certain distinctive characters. Even at the very dawn of the era the marine faunas were already grouped into provinces, sometimes widely separated from one another, at other times closely adjacent, so that it is evident that barriers to migration here and there existed. It could hardly have been otherwise; for local and more widely-spread movements of elevation and depression took place again and again during Palæozoic times.
While the younger Palæozoic systems were being accumulated, excess of upheaval over depression resulted in the gradual increase of the land.115 The continental plateau came more and more to the surface, in spite of many oscillations of level. It is quite possible, nay, even probable that this persistent growth of land, and consequent modification of oceanic currents may have rendered the climatic conditions of later Palæozoic times less uniform: but, if so, such diminished uniformity has left no recognisable impress on either faunas or floras; for fossils characteristic of the Devonian and Carboniferous strata of temperate latitudes occur far within the Arctic Circle.