Полная версия
Генезис. Небо и Земля. Том 1. История
§282. Известный физико-химик Ида Ноддак (1934) выступила в «Журнале прикладной химии» с заявлением: «Допустимо, что при бомбардировке тяжелых ядер нейтронами эти ядра распадаются на несколько больших осколков, которые являются изотопами известных элементов, хотя и не соседних с облученными». [602] Это предположение игнорировало тот факт, что во всех без исключения известных случаях превращение ядер приводило к образованию ядер атомов соседних элементов. [603] У данной гипотезы не было физической основы, в то время как против образования трансуранов в тот период не свидетельствовали ни один факт и ни одно теоретическое соображение. Ноддак предполагала, что тяжелые ядра распадаются при обстреле быстрыми нейтронами, так как нейтроны из бериллиево-полониевого источника имели энергию несколько МэВ и таковыми были все нейтронные источники того времени180.
§283. Чарльз Кристиан Лауритсен и Хорас Ричард Крейн (1934) создали первый ускоритель искусственной радиоактивности, используя образец недавно открытого Гильбертом Ньютоном Льюисом дейтерия для генерации нейтронов. [604] Данный ускоритель протонов и ионов гелия базировался на рентгеновских трубках исключительно высокого напряжения, созданных Лауритсеном совместно с Ральфом Беннетом в 1928 году, которые использовались для лучевой терапии онкобольных в радиационной лаборатории Келлога. [605] Лауритсен и Крейн (1934) измерили излучение, возникающее при аннигиляции позитрона и электрона, а также установил, что протоны могут быть захвачены ядром углерода, испуская гамма-лучи. [606] Этот процесс радиационного захвата был применен для изучения ядерных процессов в сердце звезды и производства более тяжелых элементов.
§284. Лео Силард и Томас Чалмерс (1934) обнаружил эффект разрушения химической связи под действием нейтронов, который получил известность как эффект Силарда – Чалмерса. [607] Данный эффект описывает явление, что при облучении химического соединения нейтронами или гамма-квантами в результате того, что образующиеся радиоактивные ядра приобретают значительную энергию, происходит разрушение химической связи, что позволяет выделить радиоактивные атомы. Когда они бомбардировали этил иодид нейтронами, произведенными источником радона—бериллия, они обнаружили, что более тяжелые радиоактивные изотопы йода отделились от соединения. Таким образом, они открыли способ разделения изотопов. Силард и Чалмерс высказали мысль о цепной ядерной реакции при облучении бериллия нейтронами, что, по их мнению, можно использовать для получения мощной взрывчатки нового типа. [608] Силард предложил принцип автофазировки, который лег в основу технологии современных ускорителей. Еще в 1933 году Силлард понял, что если нейтроны могут инициировать любую ядерную реакцию, производящую энергию, такую как та, которая произошла в литии, и могут быть произведены сами по себе той же самой реакцией, энергия может быть получена с небольшими затратами, так как реакция будет самоподдерживающейся. Силард подал заявку на патент на концепцию нейтронно-индуцированной ядерной цепной реакции в 1933 году, который был выдан в 1936 году. [609]
§285. Джон Арчибальд Уилер совместно с Грегори Брейтом (1934) разработали теорию процесса рождения электрон-позитронной пары при столкновении двух фотонов (так называемого процесса Брейта – Уилера). [610]. Процесс Брейта—Уилера – простейшая реакция, с помощью которой свет можно превратить в вещество. Этот процесс может принимать форму взаимодействия двух гамма-квантов с их последующим превращением в электрон-позитронную пару. В 1997 году исследователям из Национальной ускорительной лаборатории (SLAC) удалось реализовать так называемый многофотонный процесс Брейта—Уилера, используя электроны для создания высокоэнергетических фотонов, которые затем участвовали в нескольких столкновениях и в итоге превращались в электроны и позитроны, в пределах одной камеры. Теоретически предсказан аналогичный процесс в сильных электрических полях при использовании сверхкоротких лазерных импульсов большой мощности. В 2014 году физики из Имперского колледжа Лондона во главе с Оливером Пайком предложили относительно простой эксперимент для демонстрации процесса Брейта—Уилера. Эксперимент в коллайдере состоит из двух шагов. Во-первых, они предложили использовать мощный лазер высокой интенсивности, чтобы ускорить электроны до околосветовых скоростей. Затем ускоренные электроны направляются на пластину золота, чтобы создать пучок фотонов, несущих в миллиарды раз больше энергии, чем фотоны видимого света. Во-вторых, эксперимент включает в себя облучение лазером внутренней поверхности золотого полого цилиндра, для создания фотонов теплового излучения. Затем они направляют пучок фотонов из первой стадии эксперимента через центр цилиндра, в результате чего фотоны от двух источников сталкиваются и образуются электроны и позитроны. В итоге можно было бы обнаружить образование электронов и позитронов, после того как частицы покинут цилиндр. Моделирование методом Монте-Карло показывает, что производительность этого способа порядка 105 электрон-позитронных пар в одном выстреле. В своей работе Брейт и Уиллер предполагали возможность реализации данного процесса на практике путем ускорения тяжелых ионов. В 2021 году физики из Брукхейвенской национальной лаборатории (США) нашли способ решить эту проблему, используя релятивистский коллайдер тяжелых ионов, что позволило наблюдать за процессом Брейта—Уиллера в действии. Коллайдер ускоряет ионы – атомные ядра, лишенные своих электронов. Поскольку электроны имеют отрицательный заряд, а протоны (в ядре) – положительный, при удалении электронов из атома остается положительный заряд. Чем тяжелее элемент, тем больше в нем протонов и тем сильнее положительный заряд образующегося иона. Команда использовала ионы золота, которые содержат 79 протонов и, соответственно, мощный положительный заряд. Когда ионы золота ускоряются до очень высоких скоростей, они создают круговое магнитное поле, которое может быть таким же мощным, как и перпендикулярное электрическое поле в коллайдере. Там, где они пересекаются, эти равные поля могут производить электромагнитные частицы или фотоны. Когда ионы движутся со скоростью, близкой к скорости света, появляется пучок фотонов, окружающих ядро золота, которые движутся вместе с ним как облако. В этом эксперименте ионы золота были ускорены до 99,995% скорости света. При этом их облака фотонов могли взаимодействовать и сталкиваться. Сами столкновения невозможно обнаружить, но возникающие в результате электрон-позитронные пары – вполне реально. Исследователи обнаружили и проанализировали более 6000 электронно-позитронных пар, образовавшихся в ходе их эксперимента. Они обнаружили, что углы между образовавшимися частицами соответствуют столкновениям между реальными фотонами – процессу Брейта—Уиллера в действии, а результаты представляют собой четкое свидетельство прямого, одноэтапного создания пар материя – антивещество в результате столкновения фотонов, как первоначально предсказывали Брейт и Уиллер. [611] Это преобразование энергичного света в материю – прямое следствие знаменитого постулата Эйнштейна об эквивалентности энергии и массы.
§286. Филип Бартон Мун и Тилман181 (1935) определили резонансный характер взаимодействия медленных нейтронов с ядрами, обнаружив в ходе экспериментов медленные нейтроны, при использовании радон-бериллиевого источника быстрых нейтронов и позволяя им диффундировать через материалы, богатые водородом, и впоследствии установили, что поглощение медленных нейтронов йодом было, по-видимому, больше, когда индуцированная (бета-лучевая) активность детектора йода использовалась в качестве меры количества переданных нейтронов, чем когда использовались детекторы серебра или родия. [612] Торкильт Бьёрг и Карл Весткотт под руководством Резерфорда в Кавендишской лаборатории Кембриджа в соответствии с опытами Ферми, рассмотрели способ, в котором поперечные сечения для рассеяния и поглощения нейтронов различными элементами различаются со скоростью нейтронов, когда энергия нейтронов была уменьшена в результате упругих столкновений с ядрами водорода. [613] Лев Андреевич Арцимович, Игорь Васильевич Курчатов, Лев Владимирович Мысовский, Петр Александрович Палибин (1935) доказали захват нейтрона протоном. [614] Арцимович с Абрамом Исааковичем Алихановым и Артемом Исааковичем Алиханьяном (1936) доказали сохранение импульса при аннигиляции электрона и позитрона. [615] Результаты этих независимых экспериментов свидетельствовали, что поглощение медленных нейтронов различными элементами происходит неодинаково и зависит от их природы.
§287. В 1931—1932 годах Субраманьян Чандрасекар опубликовал первые статьи, посвящённые строению белых карликов. [616] На основе анализа условий механического равновесия Чандрасекар (1935) доказал существование предельной массы у белых карликов («предел Чандрасекара»). Звёзды, масса которых превышает этот предел, минуют стадию белого карлика, продолжают сжиматься и сбрасывают газовую оболочку с образованием нейтронной звезды. [617]
§288. Жак Ивон (1935) ввел функции распределения s-частиц в классическую проблему статистической механики N-тела. [618] Николай Николаевич Боголюбов (1945) высказал идею об иерархии времён релаксации, имеющую значение в статистической теории необратимых процессов. [619] Боголюбов в июле 1945 года вводит общий метод микроскопического вывода кинетических уравнений для классических систем на основе цепочки уравнений для многочастичных функций распределения, выписав распределение s-частиц с использованием иерархии; а результат публикуется в следующем году. [620] Джон Гэмбл Кирквуд в октябре 1945 года рассматривает кинетическую теорию переноса, которая издается в 1946 году. [621] Первая статья Макса Борна и Герберта Грина, посвященная общей кинетической теории жидкостей, была получена в феврале 1946 года и опубликована 31 декабря 1946 года. [622] Николай Боголюбов и Кирилл Петрович Гуров (1947) расширяют этот метод микроскопического вывода кинетических уравнений для квантовых статистических систем с использованием квантовой цепочки. [623] Таким образом данная теория была сформирована в единый комплекс уравнений, получивший название в статистической физике иерархия ББГКИ (иерархия Боголюбова-Борна-Грина-Кирквуда-Ивона, BBGKY), которая представляет собой набор уравнений, описывающих динамику системы большого числа взаимодействующих частиц. Уравнение для функции распределения s-частиц (функция плотности вероятности) в иерархии BBGKY включает (s+1) -функцию распределения частиц, образуя таким образом связанную цепочку уравнений.
§289. Карл Андерсон и его студент-дипломник Сид Неддермейер (1936) во время исследования космических лучей открыли мюон182 – субатомную частицу, которая в 207 раз тяжелее электрона. [624] Они обнаружили частицы, которые при прохождении магнитного поля отклонялись в меньшей степени, чем электроны, но более резко, чем протоны. Было сделано предположение, что их электрический заряд был равен заряду электрона, и для объяснения различия в отклонении было необходимо, чтобы эти частицы имели промежуточную массу, лежащую между массой электрона и массой протона.
§290. В 1936 году американские физики из русских эмигрантов Григорий Альфредович Брейт-Шнайдер (Грегори Брейт) и из венгерских эмигрантов Енё Пал Вигнер (Юджин Вигнер) предложили дисперсионную формулу для ядерного резонанса, описывающую непрерывное распределение вероятности с помощью плотности вероятности с использованием естественных единиц. [625] Брейт и Вигнер предположили, что помимо обычного эффекта существуют переходы в виртуальные состояния возбуждения ядра, в которых не только захваченный нейтрон, но и одна из частиц исходного ядра находится в возбужденном состоянии. Затухание излучения за счет гамма-излучения расширяет резонанс и уменьшает рассеяние по сравнению с поглощением. Они указали, что чем выше резонансная область, тем меньше будет поглощение. Авторы определили, что возбуждающие состояния, ответственные за полосы поглощения нейтронов, позволяют быстрому нейтрону терять энергию при неупругом столкновении с ядром. Формула Брейта – Вигнера используется для моделирования резонансов (нестабильных частиц) в физике высоких энергий. Вероятность возникновения резонанса при заданной энергии пропорциональна функции энергии, так что график скорости возникновения нестабильных частиц в зависимости от энергии принимает форму релятивистского распределения Брейта – Вигнера.
§291. Канадский ученый Карли Смит Билс (1936) продолжая наблюдения линий кальция «H» and «K» выявил двойные и асимметричные профили в спектрах Эпсилона и Дзета Ориона. [626] Это были первые шаги в изучении очень сложной линии межзвездного наблюдения в направлении Ориона. Асимметричные профили линий поглощения являются результатом суперпозиции нескольких линий поглощения, каждая из которых соответствует одному и тому же атомному переходу (например, линия «К» кальция), но происходит в межзвездных облаках с различными радиальными скоростями. Поскольку каждое облако имеет разную скорость (либо по направлению к наблюдателю/Земле, либо от нее), линии поглощения, возникающие внутри каждого облака, либо смещены синим, либо красным (соответственно) от длины волны покоя линий, благодаря эффекту Доплера. Данные наблюдения, подтверждающие, что материя не распределена однородно, были первыми доказательствами наличия множества дискретных облаков внутри данной структуры. Этот узел межзвездного газа и пыли длиной в световой год напоминает гусеницу.
§292. Эйнштейн опубликовал статью на тему гравитационного линзирования183 в 1936 году, что основательно связало его имя с этим эффектом. [627] Гравитационное линзирование184 действует одинаково на все виды электромагнитного излучения, не только на видимый свет. Эйнштейн рассмотрел гравитационное влияние одной звезды на излучение другой и вычислил коэффициент усиления света, а затем пришел к выводу, что в случае, когда обе звезды и наблюдатель находятся на одной прямой, изображение далекой звезды будет иметь форму кольца. Сам Эйнштейн не верил в возможность экспериментального обнаружения эффекта гравитационной линзы применительно к обычным звездам, поскольку более близкая к наблюдателю звезда-линза мешает своим излучением разглядеть искаженное и слабое изображение более далекой звезды.
§293. Фриц Цвикки (1937) пришел к выводу, что эффект гравитационной фокусировки света можно наблюдать в том случае, если линзой является галактика. В этой работе на основе наблюдений относительных скоростей галактик в скоплении Волос Вероники на 18-дюймовом телескопе Шмидта Паломарской обсерватории им получен парадоксальный результат: наблюдаемая масса скопления (полученная по суммарным светимостям галактик и их красному смещению) оказалась значительно ниже массы скопления, рассчитанной исходя из собственных скоростей членов скопления (полученных по дисперсии красного смещения) в соответствии с теоремой о вириале: суммарная наблюдаемая масса скопления оказалась в 500 раз ниже расчётной, то есть недостаточной, чтобы удерживать составляющие его галактики от «разлетания». Обосновывая свои выводы Цвикки разработал теорию скрытой массы. [628] Эта теория заключается в том, что большую часть Вселенной занимает так называемая «скрытая масса» – невидимое вещество, которое проявляет себя по взаимодействию с видимым посредством сил тяготения. Масса этого вещества во много раз превышает массу всех наблюдаемых объектов. Также, согласно теории, за пределами видимых границ галактики (в том числе и Млечного Пути) простирается несветящаяся, тёмная материя, называемая тёмным гало. К скрытой массе могут относиться чёрные дыры и коричневые карлики (газовые тела с массой, промежуточной между массами звёзд и планет).
§294. В 1937 году русский эмигрант Георгий Антонович Гамов оценил максимальную плотность нейтронного вещества в 1017 килограмм на кубический метр, что на 9 порядков больше плотности массы типичного белого карлика. [629] Его результат вполне выдержал проверку наблюдениями: измеренные плотности нейтронных звезд варьируют в диапазоне (4—6) ·1017 килограмм на кубический метр. В той же монографии Гамов, вспомнив опубликованную в 1932 году гипотезу Ландау, отметил, что нейтронные ядра могли бы обеспечить активную жизнь звезды «на очень долгое время», хотя в то время такая точка зрения уже не учитывалась.
§295. Джерард Койпер, Отто Струве и Бенгт Стрёмгрен (1937) провели спектроскопические и фотометрические наблюдения затемненных звезд в туманности с целью исследования проблемы формирования поглощающего слоя в атмосфере инфракрасных звезд. [630] Оптическая толщина ионизированной области в визуальном и фотографическом свете была рассчитана как функция максимальной плотности вдоль луча, проходящего через атмосферу. Также они рассчитали непрозрачность неионизированной области инфракрасной составляющей между рассматриваемой ионизированной областью и наблюдателем. Учёные пришли к выводу, что эффект этой непрозрачности оказывается достаточно малым, поскольку относительное содержание водорода в атмосфере инфракрасной составляющей ниже определенного предела. Ими были рассмотрены некоторые аспекты проблемы линейного поглощения в атмосфере прохладного компаньона и обобщено значение источника непрозрачности, отличного от рассеяния электронов и непрозрачности фотоэлектрического перехода. По расчетам Койпера, Струве и Стрёмгрена экваториальная скорость вращения инфракрасной звезды составляет примерно 50 километров в секунду.
§296. Итальянский физик Этторе Майорана (1937) изменил значения уравнений Дирака и продемонстрировал возможность получения полной формальной симметрии квантовой теории электрона и позитрона с помощью нового процесса количественной оценки. [631] Он сделал вывод об отсутствии необходимости негативных энергетических состояний, а также вводить любые типы частиц с отрицательной энергией, в том числе и нейтральных. В физике элементарных частиц так называемый майорановский фермион, или фермион Майораны – это фермион, который является своей собственной античастицей185. Майорановские частицы, в отличие от дираковских, не могут обладать магнитным дипольным моментом (кроме недиагональных компонент магнитного момента, изменяющих аромат). [632]. Слабое взаимодействие с электромагнитными полями делает майорановские фермионы кандидатами для частиц холодной тёмной материи. [633]. 16 июля 2013 года коллаборация GERDA сообщила [9], что в результате обработки данных первой фазы долговременного эксперимента, который проводится в итальянской подземной лаборатории Гран-Сассо на криогенном полупроводниковом мультидетекторе, состоящем из германия, обогащённого германием-76, не был обнаружен безнейтринный двойной бета-распад этого изотопа (нижнее ограничение на период полураспада – не менее 3·1025 лет). [634] Это, как и ряд более ранних и менее чувствительных экспериментов, свидетельствует в пользу того, что нейтрино не является майорановской частицей; точнее, ограничивает сверху так называемую майорановскую массу электронного нейтрино, которая для дираковского фермиона должна быть в точности равна нулю. Установленное верхнее ограничение равно приблизительно 0,2—0,4 эВ186. Ряд как действующих, так и находящихся на стадии планирования и разработки экспериментов по поиску безнейтринного двойного бета-распада нацелен на улучшение чувствительности в измерении этого параметра. [635]
§297. Отто Струве и Крис Элви (1938) опубликовали наблюдения эмиссионных туманностей в созвездиях Лебедя и Цефея, большая часть которых не концентрировалась к отдельным ярким звёздам (в отличие от планетарных туманностей). [636] Они предположили, что ультрафиолетовое излучение звёзд спектральных классов O и B может являться необходимым для существования таких областей источником энергии.
§298. Поль Дирак (1938) предположил, что универсальная гравитационная постоянная за миллиарды лет существования Вселенной могла уменьшиться. [637] Возможность такого предположения появилась после предложенной Дираком (1937) гипотезы больших чисел при оценке фундаментальных констант физики, которые могут вести к наличию иных безразмерных чисел, как это следовало из теории Эддингтона. [638] Данное наблюдение, связывающее отношения масштабов размеров во Вселенной с масштабами сил, которые составляют очень большие, безразмерные числа: около 40 порядков величины в современную космологическую эпоху. Согласно гипотезе Дирака, кажущееся сходство этих соотношений не может быть простым совпадением, но вместо этого может подразумевать космологию с этими необычными особенностями: 1) сила гравитации, представленная гравитационной постоянной, обратно пропорциональна возрасту Вселенной; 2) масса Вселенной пропорциональна квадрату ее возраста; 3) физические константы на самом деле не являются постоянными, а их значения зависят от возраста Вселенной и количества мотивов, расположенных внутри Вселенной. Дирак заложил основы квантовой электродинамики и квантовой теории гравитации, развил квантовую теорию поля с динамическими ограничениями, которые сегодня образуют основу калибровочной теории и теории суперструн.
§299. Герберт Юджин Айвс со своим коллегой Стилуэллом187 (1938, 1941) провели ряд экспериментов188 для проверки релятивистского замедления времени и доплеровского сдвига света. [639] И замедление времени, и релятивистский эффект Доплера были предсказаны Альбертом Эйнштейном в его работе 1905 года. [640] Впоследствии Эйнштейн (1907) предложил эксперимент, основанный на измерении относительных частот света, воспринимаемого как исходящий от источника света, находящегося в движении относительно наблюдателя, и вычислил дополнительный доплеровский сдвиг, обусловленный замедлением времени. [641] Этот эффект позже был назван «поперечным эффектом Доплера», поскольку первоначально предполагалось, что такие эксперименты проводятся под прямым углом по отношению к движущемуся источнику, во избежание влияния продольного доплеровского сдвига. В конце концов Айвс и Стилуэлл, ссылаясь на замедление времени, как вытекающее из теории Лоренца и Лармора, отказались от идеи измерения этого эффекта под прямым углом. Они использовали лучи в продольном направлении и нашли способ отделить меньший поперечный эффект Доплера от гораздо большего продольного эффекта Доплера. Этот эксперимент также служил испытанием для косвенной проверки расширения времени, в то время как отрицательный результат эксперимента Майкельсона-Морли мог быть объяснен сокращением длины, отрицательный результат эксперимента Кеннеди-Торндайка требовал расширения времени в дополнение к сокращению длины, чтобы объяснить, почему никакие фазовые сдвиги не будут обнаружены в то время как Земля движется вокруг Солнца. Первое прямое подтверждение расширения времени было достигнуто именно экспериментом Айвса-Стилуэлла. Объединив результаты этих трех экспериментов, можно получить полную трансформацию Лоренца. Вместе с экспериментами Майкельсона-Морли и Кеннеди-Торндайка, эксперимент Айвса—Стилуэлла входит в число фундаментальных тестов специальной теории относительности.
§300. Оскар Клейн (1938) на Варшавской конференции предложил новые уравнения поля на идеях ранее постулированного им решения Калуцы-Клейна, основанные на единой модели электромагнетизма и ядерной силы. [642] Эта теория была одной из первых успешных теорий, положивших начало геометрической интерпретации калибровочных полей и, возможно, первой успешной теорией объединения, которая, хотя и не привела к экспериментально подтверждённым открытиям, но была внутренне непротиворечивой и идейно содержательной теорией, не противоречащей эксперименту. [643] Применение и определённое развитие теория Калуцы – Клейна получила позже, в частности, в теории струн.
§301. Ганс Бете и Чарльз Кричфилд (1938) постулировали идею, что звёзды питаются от ядерного синтеза. [644] Для осуществления цикла реакций с участием углерода, требуется некоторое количество углерода или азота. При этом сами атомы углерода или азота не участвуют в превращениях, они служат как бы «оболочкой», в которой с течением времени ядра водорода постепенно сливаются в ядра гелия. Бете и Кричфилд показали, что образование гелия из водорода может происходить и без участия углерода или азота189, а Бете далее рассмотрел преобразования в замкнутом цикле, названном его именем. [645] Теория о том, что протон—протонные реакции являются основным принципом, по которому Солнце и другие звезды горят, была поддержана Артуром Стэнли Эддингтоном в 1920 году190, выдвинувшем гипотезу о том, что источником энергии звёзд являются термоядерные реакции с превращением водорода в гелий. [646]
§302. Ян Оорт (1938) пояснил, что бо́льшая часть поглощающего вещества в Галактике сосредоточена в слое толщиной по 200 парсек191 с обеих сторон галактической плоскости; а также показал, что звёздная плотность растет в направлении к галактическому центру и что Солнце расположено в области с пониженной звёздной плотностью. [647]
§303. Роберт Оппенгеймер и Роберт Сербер (1938) предположили, что существует предел массы для стабильности нейтронных звезд. [648] Они показали, что адекватный учет ядерных сил практически исключает возможность существования нейтронных ядер у звезд, чьи массы сравнимы с массой Солнца. Оппенгеймер и Сербер также пришли к совершенно верному, как показало время, заключению, что никакое нейтронное ядро не может возникнуть до того, как звезда полностью исчерпает все источники ядерной энергии. В их коротком сообщении также предположено, что масса такого ядра во всяком случае не может быть меньше одной десятой массы Солнца. Эта оценка была получена на основе одних только энергетических соображений и оказалась верной192.