Полная версия
Didáctica de la matemática
hacer cualquier previsión precisa.
En cambio, ¿cómo cae una piedra dejada caer
desde una cierta altura?
Siempre de la misma manera;
da la impresión de no tener elección.
Pues bien, la actitud científica no consiste en el atormentarse alrededor de la pregunta –absolutamente irrelevante desde este punto de vista- si la piedra cae por voluntad de un algún espíritu congénito en la naturaleza
(o de un dios); consiste en cambio antes que nada en el observar y describir exactamente cómo se da el fenómeno y en segundo lugar en el preguntarse si no es consecuencia de un comportamiento más general de la naturaleza o, como se dice, de una ley a la cual este fenómeno obedece.
Maria Luisa Dalla Chiara y Giuliano
Toraldo di Francia, La scimmia allo specchio.
La didáctica A me parece ser de fundamental importancia. Es en esta tipología que pondría también algunas de las actividades que caen bajo el nombre de “uso de la historia de la matemática como instrumento didáctico”17. Tanto la Historia (como análisis crítico de la evolución de las ideas), la historia (como desarrollo de los hechos), como la historia anecdótica, tienen papeles interesantes en este sector A. Una primera distinción entre estos papeles diferentes y una concreta valorización de cada uno de ellos, se halla en D’Amore y Speranza (1989, 1992, 1995) y en Furinghetti (1993).
El primero (análisis crítico de la evolución de las ideas) constituye ciertamente un sector de interés por privilegiar si no precisamente para el estudiante (que, a veces, podría revelarse inmaduro y por lo tanto no preparado para afrontar situaciones mucho más grandes que él), al menos para el maestro. Parece oportuno admitir que el maestro, gracias al análisis crítico de la evolución de las ideas matemáticas, madure convicciones y reflexiones científicas, epistemológicas (en el sentido de: filosofía de la ciencia) y por lo tanto didácticas. Este por lo tanto, enfatizado por mi cursivo, no es inmediato, ni por todos compartido. En el debate internacional acerca de la preparación inicial de los futuros maestros de matemáticas, hay quien ve oportuno insertar cuestiones de carácter histórico y epistemológico, precisamente con la certeza de la validez de esa consecuencia.
La segunda (historia como desarrollo de los hechos) explica los orígenes de las ideas, de los problemas, de las teorías que han hecho de la matemática lo que es hoy y por lo tanto infunde la certidumbre que esta disciplina no es una colección anacrónica de cosas ya hechas y sistematizadas desde siempre y para siempre, sino algo en perpetua evolución, hecha por el hombre para el hombre, rica por lo tanto de referencias a la historia cultural y social entendida en el sentido más amplio.
Finalmente la tercera (que podría llamar con la sola palabra: anecdótica) fascina a los jóvenes (y no sólo a ellos...); desde mi punto de vista, tiene una función no banal: los matemáticos, personajes que dedican su vida a algo que para la mayoría es misterioso, son seres humanos que tienen una historia personal (que, muchas veces, se confunde con la científica); eso los vuelve menos ajenos a los estudiantes, creando una especie de fascinación ya no misteriosa, sino curiosa, alrededor de ellos y de su producto cultural. La matemática se desmitifica, precisamente gracias al hecho que quienes la crean no se hayan fuera del mundo, y se acercan al mundo de los estudiantes.
Un ejemplo: una vez en un grupo de cuarto de primaria (edad de los estudiantes: 9-10 años) conté (con bastantes particulares narrativos absolutamente inventados pero plausibles) la famosa historia (verdadera) con base en la cual, en una escuela primaria alemana, un niño de 8 años, que después se convirtió en un personaje tan famoso e importante digno de merecer el título de “príncipe de los matemáticos”, Carl Friedrich Gauss [1777-1855], resolvió de manera brillante e inesperada el problema aritmético de calcular la suma siguiente, formada por cien sumandos: 1+2+3+...+98+99+100. Al reto lanzado al grupo de hallar una forma rápida de realizar la operación, tuve muchas respuestas (entre las cuales la ingeniosa pero para nada rápida: ¡“Usamos la calculadora”!). Cuando revelé el método de Gauss niño (es decir: reconocer que para calcular la suma antes dicha se puede multiplicar 101 por 50, dado que 1+100 da 101, como 2+99, como 3+98, etcétera), todos los estudiantes se pusieron a inventar soluciones personales (algunas de las cuales más bien fantásticas e inútiles, otras ingeniosas), para emular a su famoso coetáneo de hace dos siglos. La anécdota indujo interés por el argumento y por lo tanto una motivación a la tarea que se trasformó inmediatamente en volición. Y ha desmontado la idea según la cual sólo adultos ingeniosos y muy inteligentes pueden trabajar con las ideas matemáticas. El mundo de la matemática, lejano y mítico, se acercó de repente a las experiencias vivas y reales de los niños.
Ahora, es indudable que la anecdótica no se puede interpretar como investigación histórica académicamente seria, pero es también verdad que, desde mi punto de vista, en una visión didáctica A es deseable poner en movimiento todos los mecanismos de... seducción posibles, con tal de obtener el objetivo (Furinghetti, 1993).
1.6. Otros ejemplos de didáctica A
Que el joven no tenga una fe ciega: que nada esté bien para él excepto aquello que siente que está bien. Incitándolo siempre hacia cosas que sobrepasan su comprensión se ilusionan de ser precavidos pero no lo son. Con tal de proporcionarle algún instrumento superfluo, que quizás no usará jamás, le quitan lo que es más universal para el hombre: el buen sentido;
lo acostumbran a dejarse guiar siempre,
a ser un autómata en las manos de otros.
Jean-Jacques Rousseau,
Emilio o de la educación.
Por lo tanto, forman parte de la didáctica de tipo A todos los estudios y las ideaciones de instrumentos (concretos o no) que pueden mejorar la enseñanza de la matemática, en el sentido que precisé líneas arriba.
Hemos visto el trabajo de Dienes, de Castelnuovo y los ambientes inspirados en las ideas de Montessori. Veamos otros ejemplos.
En la escuela primaria, recuerdo los así llamados “números en color”, pensados por Galeb Gattegno [1911-1988]. A los niños se les proporcionan unas reglas de madera coloreadas que sirven para hacer representaciones concretas de los valores numéricos; se ejercitan así dos estímulos visuales en la aproximación al número natural: altura, en cuanto que las reglas tienen base cuadrada constante pero altura diferente proporcional al número que representan; y color, en cuanto que cada regla se pinta en modo diferente dependiendo del número que representa. Existe también un intercambio entre número en sentido cardinal y número como expresión de una medida. En efecto, la regla más pequeña, la unitaria (se trata de un cubito), se considera como la unidad de medida es decir se asimila al número 1. Por lo que la regla-tres, por ejemplo, es alta tres veces la unidad de medida: para rehacer la regla-tres, a partir del color, se necesita sobreponer tres cubos-unidad (se pierde algo en la aproximación ordinal, pero quizás se le recupera con oportunas actividades de conteo). Este material, que tuvo una notable fortuna mundial en los años 70, se halla aún presente en las escuelas primarias, aunque ahora su papel didáctico me parece cada vez menos enfatizado.
Bastante difundidas, especialmente en los años 70 y 80, fueron salones equipados de manera particular llamados “laboratorios de matemática”. Se trata de verdaderos laboratorios didácticos en los que los estudiantes construyen (en el verdadero sentido concreto de la palabra) objetos relacionados con la matemática: máquinas eléctricas para hacer cálculos, instrumentos para estudiar las transformaciones geométricas, máquinas lógicas para estudiar los conectivos... (Caldelli, D’Amore, 1986). Hubo años muy intensos de trabajo alrededor de esta idea que tiene indudables frutos muy positivos en el plano didáctico – cognitivo, dado que se instauran mecanismos relacionales (maestro - estudiante) muy particulares y relaciones cognitivas (estudiante - matemática) de extremo interés teórico (D’Amore, 1988, 1990-91).
Es obvio que esta actividad en laboratorio se configura al interior de la así llamada’“pedagogía activa”: el muchacho construye, y en nuestro caso no sólo metafóricamente, sino concretamente, con las propias manos, objetos que demandan conocimiento. Los conceptos son el resultado de la elaboración de proyectos que deben ser examinados meticulosamente por la experiencia. El producto debe pensarse a priori porque tiene un objetivo declarado y esperado, pero después debe verificarse su eficacia.
Hubo años de gran interés social por estas iniciativas, entre finales de los años 70 y mitad de los años 80. Yo mismo coordiné el nacimiento de algunas decenas de laboratorios en Bolonia (escuelas primarias comunales, en ese entonces existentes), Osteria Grande18(escuela estatal, con descarga oficial de un maestro, precisamente con el objetivo de seguir las actividades de laboratorio), Imola (lo mismo), Lugo de Romagna y localidades limítrofes (donde realizamos varios centros), y así sucesivamente19. Dado que el instrumento matemático no era, como habitualmente, del todo realizado por un adulto y llevado a la clase ya confeccionado y listo para el uso, sino sólo propuesto por el maestro por medio de la necesidad de volver concreta una idea, pero después proyectado, realizado y verificado por el estudiante, se podría incluso pensar que esta actividad constituye un “puente” entre la tipología A y la B de la didáctica (que conoceremos en detalle dentro de poco).
Otro instrumento que tuvo resonancia mundial fue la así llamada “minicomputadora” ideada por Georges Papy. En realidad, más allá del nombre, el instrumento nada tiene que ver con la (de ese entonces) nueva emergente realidad tecnológica, dado que consiste simplemente en un cuadrado de papel subdividido en otros 4 cuadrados (mediante las dos medianas). La minicomputadora de Papy se presta a juegos de transformación de la base numérica dos a la de base diez (y viceversa), utiliza exponentes de base dos y permite cálculos de un cierto interés, motivando, mediante una idea lúdica simple y genial, al estudiante a la tarea. Es más, el estudiante tiene siempre la impresión de crear por sí mismo algo nuevo, dado que descubre continuamente curiosos y fascinantes vínculos entre números escritos en las dos diferentes bases. Siempre a Papy y a sus seguidores se les atribuye un uso masivo del “lenguaje de las flechas”, una especie de ambiente lingüístico pre-formal, considerado por quien lo usa “neutro” y “espontáneo”, incluso pre-cognitivo porque su uso no requeriría de capacidades específicas.
¿Cómo no recordar el célebre geoplano, un cuadrado de madera idealmente cuadriculado, con clavos en los vértices de tal cuadrícula? También este simple y genial instrumento dio la vuelta al mundo y se difundió rápidamente, y se halla presente aún hoy en muchas realidades escolares, especialmente en la escuela obligatoria. Se presta a actividades bastante elementales, por ejemplo como base de figuras geométricas vueltas visibles con ligas de colores estiradas alrededor de los clavos-vértices. Pero también para ilustrar en modo muy sencillo resultados matemáticos más avanzados, como el teorema de Pick20, adecuado para realizar investigaciones incluso bastante serias de carácter inductivo y deductivo. Más en general, el plano cuadriculado se presta a varias actividades matemáticas: el estudio de la así llamada geometría del taxi, de la probabilidad, del triángulo de Tartaglia-Pascal etc. (Caldelli, D’Amore, 1986).
La lista podría continuar, dado que en tantos años de experiencias en la tipología A, la didáctica de la matemática ha parido muchas ideas concretas, algunas de las cuales son en verdad geniales.
Para concluir, quiero sólo recordar el ábaco multibase, un instrumento bastante difundido en la escuela primaria y secundaria en los años 70, pero ahora desaparecido, adecuado para hacer cálculos pasando de una base numérica a otra. La idea inspiradora era la siguiente: dado que usamos siempre la base diez, el estudiante podría ser inducido implícitamente a pensar que exista sólo dicha base y que estamos de alguna manera “obligados” a usarla (aunque los cálculos sobre la duración de los intervalos temporales y sobre las amplitudes de los ángulos constituyen algunos contraejemplos).
Puede por lo tanto ser útil sugerir, en el modo más concreto posible, que existen escrituras numéricas interpretables de manera diversa dependiendo de la base numérica elegida. Por ejemplo, la misma escritura “11” puede decir cosas diferentes, dependiendo del ámbito numérico seleccionado: querrá decir “tres” si elegimos la base dos, querrá decir “once” si escogimos la base diez, querrá decir “cinco” si elegimos la base cuatro, etcétera.
Desafortunadamente este instrumento y esta idea se malentendieron de una manera exagerada, creando una distorsión: más que limitarse a dar esta visión, de la posible multiplicidad de bases, algunos maestros entusiastas (pero un poco ingenuos) comenzaron a transformar esta actividad en una serie de ejercicios antipáticos y aburridos, que además no tuvieron resultados didácticos positivos ... Pero eso nada quita, desde mi punto de vista, a la idea inicial y al instrumento en sí.
1.7. Límites de la didáctica A
Que nada sepa él sólo por haberlo oído de ustedes, sino sólo por haberlo comprendido por sí mismo: que no aprenda la ciencia: que la descubra. Si logran sustituir en su mente la autoridad por la razón, no razonará más; no será más que el bufón de la opinión de los demás.
Jean-Jacques Rousseau,
Emilio o de la educación.
Este destino, el de los malentendidos y de la exageración acrítica, de la pérdida de la evidencia de la motivación didáctica que está en el origen de una idea y de un instrumento, parece ser común a muchas de las innovaciones que consideré ser parte de la didáctica A, quizás precisamente a causa del hecho que tanto los que proponían como los adeptos no tenían como base resultados de una investigación didáctica sobre los efectos cognitivos en relación a las modificaciones de los aprendizajes obtenidos con el instrumento; la confianza se derivaba del instrumento en sí, del grado de convicción operado por quien lo propone, del consenso que lograba, en todos los niveles, alrededor de las propuestas.
Así ha sido para muchos de los instrumentos presentados, para una versión ingenua de la teoría elemental de conjuntos (sobre la que regresaré explícitamente en 1.8.), para la introducción de la lógica de los enunciados (una exasperada puesta en obra de tablas de verdad y de conectivos) etc.
Uno de los problemas didácticos principales que liga entre sí todo el material presentado hasta ahora me parece ser el del transfer cognitivo. Me detendré en este punto por ahora muy brevemente, para después retomarlo más adelante en manera más profunda.
Muchos de los creadores de los instrumentos señalados han realizado ambientes de trabajo particulares, cerrados en sí mismos, ambientes artificiales; en ellos se potencian, evidenciándolos y aislándolos, los aspectos matemáticos de las actividades mismas.
Pero se trata de actividades por así decirlo con un fin en sí mismas, es decir “internas”. La apuesta pedagógica de fondo parece ser la siguiente: la motivación y el interés que la nueva actividad ha creado en el estudiante son tales que el aprendizaje del concepto “en juego” no será epidérmico sino profundo. En tal modo, cuando el estudiante se halle frente a un problema del mismo tipo, pero en un ambiente diferente, transferirá el saber de una situación a la otra, en modo natural, implícito, espontáneo, sin requerimientos cognitivos específicos para la nueva situación de aprendizaje. Se trata, dicho en palabras simples, del fenómeno del transfer cognitivo: de un conocimiento “artificial” construido sobre medida en un ambiente oportuno y específico, al conocimiento generalizado, es decir a la capacidad de producir habilidades cognitivas y de procedimiento en otras situaciones.
Pero, de hecho, las cosas no son siempre así; es más, si nos fijamos bien, difícilmente son así: muchas veces las capacidades cognitivas y de procedimiento se quedan ancladas en el ámbito en el cual se han logrado: no se sabe transferir el conocimiento, salvo en casos particulares.
Este límite ha redimensionado mucho los estudios hechos en ámbito A; estos, aunque prosiguen, se hallan hoy usualmente acompañados por una seria investigación empírica, bien fundada, cada vez más especializada, y entonces fatalmente tienden a convertirse en investigaciones de didáctica B; o no se les considera ya para nada hoy en día, sino como puros ejercicios retóricos, sin ninguna credibilidad didáctica (en realidad, como ya lo advertí, la problemática del transfer cognitivo no es tan banal. Deberé retomarla más adelante con detalles, mucho más profundos).
Pero, ¿se puede hacer investigación empírica en una didáctica de tipo A?
Debo decir inmediatamente que si únicamente se considera la tipología A como ambiente de investigación, entonces se necesita reconocer que esos estudiosos no han logrado elaborar su propio estatuto epistemológico global.
A esta afirmación alguien rebate llamando en causa al bourbakismo21; pero la referencia al estructuralismo bourbakista es incorrecta, porque ella no es, ni jamás ha pedido ser, una epistemología de la investigación en didáctica, siendo totalmente ajena a ella.
Tampoco es correcto referirse al estructuralismo en sentido piagetiano, que también al bourbakista hace referencias continuas: la teoría según la cual el aprendizaje se da “a estadios” jerárquicos lineales, en analogía con el modelo de la epistemología genética de Jean Piaget [1896-1980], se halla desde hace décadas en el centro de discusiones: se trata de una elegante y fascinante construcción teórica, pero que parece titubear al tratar de hallar serias y significativas verificaciones empíricas que la vuelvan aceptable; es más, las verificaciones empíricas hasta aquí realizadas parecen ir en direcciones muy diferentes y opuestas22.
Sin una verdadera y propia investigación empírica, ¿qué certeza tenemos acerca del hecho que el uso de un instrumento cualquiera entre los descritos en la tipología A vuelva a los estudiantes en verdad más hábiles en algo que no sea meramente específico? Por ejemplo, usar durante mucho tiempo y con la asistencia del maestro el ábaco multibase vuelve al estudiante, obviamente, más hábil en usar... el ábaco multibase; pero ¿estamos seguros que ese mismo estudiante será más hábil también en algo más, por ejemplo en la ejecución de una operación, en la resolución de un problema, en la demostración de un enunciado? O, al menos, ¿ha asumido una consciencia más profunda de los conceptos aritméticos de base y sobre la matemática en general?
Pero, por otra parte, si se efectúan pruebas empíricas, con oportunos y bien estudiados dispositivos experimentales, sobre los resultados cognitivos obtenidos con actividades de tipo A, entonces se pasa a la investigación considerada experimental, se entra en el campo de la epistemología del aprendizaje, es decir se pasa al punto que distingue a la tipología B.
Para cerrar este párrafo, señalo un par de trabajos histórico-críticos de Angelo Pescarini (1995, 1997) que presentan un buen panorama acerca de la investigación en didáctica de la matemática, deteniéndose en los años 80, y tratando de establecer algunos fundamentos de carácter epistemológico a las diferentes concepciones surgidas entre los años 50 y los 80.
El trabajo de Dienes, Papy y otros “monstruos sagrados” de los años 60 y 70 fue sometido a críticas radicales por parte de algunos didactas en los años 80; en particular, en modo muy lúcido y de forma tal de no permitir réplicas, por parte de Guy Brousseau (1986) (el nombre de este didacta francés aparecerá varias veces citado en lo que sigue). Remito a ese largo artículo de 1986, uno de los pilares del nuevo modo de entender la didáctica de la matemática, para tener los detalles de tales críticas. Véase también Sarrazy (1995; en la trad. it. en las páginas 136-137).
1.8. El “caso” de la versión escolar (ingenua) de la teoría elemental de conjuntos y las primeras investigaciones sobre la didáctica de la aritmética
Cualquiera que tenga la ambición de hacerse escuchar en medio de una multitud, deberá hacer presión, empujar, ponerse adelante y trepar con muchos esfuerzos, hasta que se habrá levantado a una cierta altura sobre los demás. Ahora, en toda asamblea, por una particular propiedad, se puede observar que, sobre las cabezas de los asistentes, por más que se hallen amontonados, existe siempre espacio suficiente; pero es difícil llegar, porque abrirse paso en una multitud es una fatiga dura, como salir del infierno; (…). A tal fin, en todas las épocas, la solución de los filósofos ha sido la de dar vida a construcciones en el aire.
Jonathan Swift,
Fábula del barril.
Mención a parte se merece la historia de la versión escolar, dicha a veces “ingenua”, de la teoría elemental de conjuntos que apareció en el mundo de la escuela en los años 60 empezando en los Estados Unidos, Francia y Bélgica, pero llegando a todos los continentes.
[A propósito de denominación, debe decirse explícitamente que “conjunto” es, en teoría de los conjuntos y por lo tanto en matemáticas, un término abstracto; pero cuando se usa didácticamente en los niveles escolares primarios, se le asimila a los nombres “reunión”, “colección” y otros semejantes, precisamente en el sentido concreto, de más... cosas, a veces verdaderos objetos materiales, reunidos en un todo único y pensadas colectivamente. Por lo que, aviso al lector lógico, que en lo que sigue de este párrafo, usaré el término “conjunto” en esta acepción no-matemática, tomada del lenguaje natural y del uso que de ella se hace desde hace décadas en una didáctica a veces ingenua y burda]23.
En realidad, me parece poder afirmar que la así llamada “teoría de conjuntos” era sólo la punta emergente de una más vasta visión estructuralista, de inspiración bourbakista, de la matemática, que tuvo varias denominaciones: Nueva Matemática, Matemática Moderna y otras más. Otras solicitudes de contenido y otras instancias de método casi no se notaron, pero el lenguaje de los conjuntos fue una novedad que se extendió como mancha de aceite, sobre la que se escribieron ríos de tinta, y que tuvo una fortuna primero lenta, pero después enorme, aún ahora no apagada del todo.
Para evitar equivocaciones, es necesario decir que el nacimiento de una teoría de los conjuntos consciente en matemática es cuestión más bien reciente, del siglo XIX24; y que está fuera de duda el hecho que, aún con todos sus límites25, el lenguaje de una ingenua teoría de los conjuntos, en matemática, es cómodo y, por ciertos aspectos, irrenunciable.
Pero aquí, no estoy hablando de la vertiente matemática, sino de la vertiente didáctica, que es otra cosa; aún más es otra cosa, dado que se habla de didáctica preuniversitaria...
Quizás (pero sólo quizás) toda esta aventura comienza con el muy famoso libro de J. Piaget y A. Szeminska, La genèse du nombre chez l’enfant (Piaget, Szeminska, 1941) publicado por primera vez en 1941 [y traducido 27 años después en Italia (Florencia, La Nuova Italia, 1968): lo que explica la difusión de estas ideas de amplio radio fue tan tardía en mi País]. Se debe decir también que fueron sobretodo psicólogos y pedagogos a ocuparse de este libro y, al menos inicialmente, de este tipo de cosas; por lo que, la difusión de estas ideas en didáctica y su distribución ramificada en el territorio, no fue obra de los matemáticos26. Sucesivamente, las ideas de Jean Piaget fueron recalcadas varias veces, por él mismo o por sus estudiantes; no puedo no recordar la obra colectiva de Gréco, Grize, Papert y Piaget (1960).
Se necesita además no olvidar la célebre conferencia que Jean Piaget impartió en Lyon en 1949 a maestros de escuela primaria y que contribuyó, en los años 50, a dar un impulso decisivo a la precedente didáctica de la aritmética (o, mejor, de la idea de número).
¿En qué consiste tal impulso? Piaget puso en evidencia algunas supuestas dificultades que el niño halla en su propia construcción del “concepto de número”, independientemente de lo que eso signifique. La primera se refiere al hecho que el niño no parece en grado de aferrar la equinumerosidad de una colección dada de objetos, en el momento en el que se dispongan perceptivamente en modos diferentes (hago referencia al célebre experimento sobre la así llamada “conservación del número”, cuando los objetos de un conjunto se desparraman sobre la mesa después de haber estado cerca entre sí). Otra consiste en el hecho que diferentes disposiciones de objetos de más conjuntos parecen hacer que el niño afirme que se trata de números diferentes de objetos, aunque no sea así.