Полная версия
The Intention Experiment: Use Your Thoughts to Change the World
Schwartz listened to the talk with growing fascination. Green was discarding what might be the most interesting part of the data, he thought. One man’s noise was another man’s signal. Does movement, even the physiology of your breathing, create an electromagnetic signal big enough to be picked up on a copper wall? Could it be that human beings were not only receivers of signals but also transmitters?
It made perfect sense that we transmitted energy. A great deal of evidence had already proved that all living tissue has an electric charge. Placing this charge in three-dimensional space caused an electromagnetic field that travelled at the speed of light. The mechanisms for the transmission of energy were clear, but what was unclear was the degree to which we sent out electromagnetic fields just by simple movements and whether our energy was being picked up by other living things.
Schwartz was itching to test this out for himself. After the conference, he contacted Green for advice about how to build his own copper wall. He rushed to Home Depot, which did not stock copper shielding but did have aluminium shielding, which could also act as a rudimentary antenna. He purchased some two by fours, placed them on glass bricks so that they would be isolated from the ground, and used them to assemble a ‘wall’. After he had attached the wall to an EEG amplifier, he began playing around with the effects of his hand, waving it back and forth above the box. As he suspected, the amplifier tracked the movement. His hand movements were generating signals.4
Schwartz began demonstrating these effects in front of his students in his faculty office, making use of a bust of Einstein for dramatic effect. With these experiments, he made use of an EEG cap, with its dozens of electrodes. When not picking up brain signals, the cap will register only noise on the amplifier.
During his experiments, Schwartz placed the EEG cap on his Einstein bust, and turned on just a single electrode channel on the top of the cap. Then he moved his hand over Einstein’s head. As though the great man had suddenly experienced a moment of enlightenment, the amplifier suddenly came alive and produced evidence of an electromagnetic wave. But the signal, Schwartz explained to his students, was not a sudden brain wave emitted from the lifeless statue – only the tracking of the electromagnetic field produced by his arm’s movement. It seemed indisputable: his body must be sending out a signal with every single flutter of his hand.
Schwartz got more creative with his experiments. When he tried the same gesture from three feet away, the signal diminished. When he placed the bust in a Faraday cage, an enclosure of tightly knit copper mesh that screens out electromagnetic fields, all effect disappeared. This strange energy resulting from movement had all the hallmarks of electricity: it decreased with distance, and was blocked by an electromagnetic shield.
At one point, Schwartz asked one of the students to stand with his left hand over Einstein’s head, with his right arm extended towards Schwartz, who was sitting in a chair three feet away. Schwartz moved his arm up and down. To the amazement of the other students, Schwartz’s movement was picked up by the amplifier. The signal had passed through Schwartz’s body and travelled through the student. Schwartz was still generating the signal, but this time, the student had become the antenna, receiving the signal and transmitting it to the amplifier, which acted as another antenna.
Schwartz realized he had hit upon the most important point of all his research. Simple movement generated electrical charge, but, more important, it created a relationship. Every movement we make appears to be felt by the people around us. The implications were staggering. What if he were admonishing a student? What might be the physical effect on the student of wagging his finger while shouting ‘Don’t do that’? The student might feel as if he were getting shot with a wave of energy. Some people might even have more powerful positive or negative charges than others. In Elmer Green’s copper wall experiment, all sorts of equipment malfunctioned in the presence of Roslyn Bruyere, a famous healer.
Schwartz was onto something fundamental about the actual energy that human beings emit. Could the energy of thought have the same effect as the energy of movement outside the thinker’s own body? Did thoughts also create a relationship with the people around us? Every intention towards someone else might have its own physical counterpart, which would be registered by its recipient as a physical effect.
Like Schwartz, I suspected the energy generated by thoughts did not behave in the same way as the energy generated by movement. After all, the signal from movement decreased over distance, much like ordinary electricity. With healing, distance appeared to be irrelevant. The energy of intention, if indeed there were any, would have to be more fundamental than that of ordinary electromagnetism – and lie somewhere, perhaps, in the realm of quantum physics. How could I test the energetic effects of intention? Healers, who appeared to be sending more energy than normal through their healing, offered an obvious place to start.
Elmer Green demonstrated in his research that an enormous surge of electrostatic energy occurred during healing. When a person is simply standing still, his or her breathing and beating heart will produce electrostatic energy of 10–15 millivolts on the EEG amplifiers; during activities requiring focused attention, such as meditation, the energy will surge up to 3 volts. During healing, however, Green’s healers produced voltage surges up to 190 volts; one produced 15 such pulses, which were 100,000 times higher than normal, with smaller pulses of 1–5 volts appearing on each of the four copper walls. On investigating the source of this energy, Green discovered that the pulses were coming from the healer’s abdomen, called dan tien and considered the central engine of internal energy in the body in Chinese martial arts.5
Stanford University physicist William Tiller constructed an ingenious device to measure the energy produced by healers. The equipment discharged a steady stream of gas and recorded the exact number of electrons pulsing out with the discharge. Any increase in voltage would be captured by the pulse counter.
In his experiment, Tiller asked ordinary volunteers to place their hands about six inches from his device and hold a mental intention to increase the count rate. In the majority of more than 1000 such experiments, Tiller discovered that, during the intention, the number of recorded pulses would increase by 50,000 and remain there for 5 minutes. These increases would occur even if a participant was not close to the machine, so long as he or she held an intention. Tiller concluded that directed thoughts produce demonstrable physical energy, even over remote distance.6
I found two other studies measuring the actual electrical frequencies emitted by people using intention. One study measured healing energy and the other examined energy generated by a Chinese Qigong master during times that he was emitting external Qi, the Chinese term for energy or the life force.7 In both instances, the measurements were identical: frequency levels of 2–30 hertz were being emitted by the healers.
This energy also seemed to change the molecular nature of matter. I discovered a body of scientific evidence examining chemical changes caused by intention. Bernard Grad, an associate professor of biology at McGill University in Montreal, had examined the effect of healing energy on water that was to be used to irrigate plants. After a group of healers had sent healing to samples of water, Grad chemically analysed the water by infrared spectroscopy. He discovered that the water treated by the healers had undergone a fundamental change in the bonding of oxygen and hydrogen in its molecular makeup. The hydrogen bonding between the molecules had lessened in a similar manner to that which occurs in water exposed to magnets.8 A number of other scientists confirmed Grad’s findings; Russian research discovered that the hydrogen–oxygen bonds in water molecules undergo distortions in the crystalline microstructure during healing.9
These kinds of changes can occur simply through the act of intention. In one study, experienced meditators sent an intention to affect the molecular structure of water samples they were holding throughout the meditation. When the water was later examined by infrared spectrophotometry, many of its essential qualities, particularly its absorbance – the amount of light absorbed by the water at a particular wavelength – had been significantly altered.10 When someone holds a focused thought, he may be altering the very molecular structure of the object of his intention.
In his research, Gary Schwartz wondered whether intention only manifested as electrostatic energy. Perhaps magnetic energy also played a role. Magnetic fields naturally had more power, more ‘push–pull’ energy. Magnetism seemed the more powerful and universal energy; the earth itself is profoundly influenced by its own faint pulse of geomagnetic energy. Schwartz remembered a study carried out by William Tiller, in which psychics had been placed inside a variety of devices that block different forms of energy. They had performed better than usual in a Faraday cage, which filters out only electrical energy, but they performed worse when placed in a magnetically shielded room.11
From these early studies, Schwartz gleaned two important implications: healing may generate an initial surge of electricity, but the real transfer mechanism may be magnetic. Indeed, psychic phenomena and psychokinesis could be differentially influenced, simply through different types of shielding. Electrical signals might interfere, while magnetic signals enhance the process.
To test this latest idea, Schwartz was approached by a colleague of his, Melinda Connor, a post-doctoral fellow in her mid-forties with an interest in healing. The first hurdle was finding an accurate means of picking up magnetic signals. Measuring tiny low-frequency magnetic fields is tricky, requiring the use of expensive and highly sensitive equipment called a SQUID, or superconducting quantum interference device. A SQUID, which can cost up to four million dollars, ordinarily occupies a specially constructed room that has been magnetically shielded in order to eliminate ambient radiating noise.
The best Schwartz and Connor could come up with on their limited budget was a poor man’s SQUID – a small handheld, battery-operated three-axis digital gaussmeter originally designed to measure electromagnetic pollution by picking up extra-low-frequency (ELF) magnetic fields. The gaussmeter was sensitive enough to pick up one-thousandth of a gauss, a very faint pulse of a magnetic field. In Schwartz’s mind, this level of sensitivity was more than adequate to do the job.
It occurred to Connor that the way to measure change in low-frequency magnetic fields was to count the number of changes in the meter reading over time. When simply recording ambient stable magnetic fields, the device will only deviate slightly – by less than one-tenth of a gauss. However, in the presence of an oscillating magnetic field – with periodic changes in frequency – the numbers will keep moving, from, say, 0.6 to 0.7 to 0.8, and back down to 0.6. The greater and more frequent the change, which would be recorded by the number of changes in the dials, the more likely it is that the magnetic field has been affected by a source of directed energy.
Connor and Schwartz gathered together a group of practitioners of Reiki, the healing art developed a century ago in Japan. They took measurements near each hand of all the healers during alternating periods while they were ‘running energy’ and then during times they were at rest, with their eyes closed. Next, the pair assembled a group of ‘master healers’ with a substantial track record of successful, dramatic healings. Again, Connor and Schwartz took magnetic field measurements near each hand, while the master healers were running energy and at rest. Then, they compared the Reiki measurements with measurements they had taken of people who had not been trained in healing.
Once Schwartz and Conner had analysed the data, they discovered that both groups of healers demonstrated significant fluctuations in very low pulsations of a magnetic field, emanating from both hands. A huge increase in oscillations in the magnetic field occurred whenever a healer began to run energy. However, the most profound energy increase surged from their dominant hands. The control group of people who were not trained healers did not demonstrate the same effect.
Then Schwartz compared effects from the Reiki group with those of the master healers and discovered another enormous difference. The master healers averaged close to a third more magnetic-field changes per minute than the Reiki healers.12
The study results seemed clear. Schwartz and Connor had their proof that directed intention manifests as both electrostatic and magnetic energy. But they also discovered that intention was like playing the piano; you need to learn how to do it, and some people do it better than others.
In considering what this all meant, Gary Schwartz thought of the phrase often used by medical doctors, usually in emergency situations: when you hear hoof beats, don’t think zebras. In other words, when you are trying to diagnose someone with physical symptoms, first rule out all the most likely causes, and only then consider more exotic possibilities. He liked to approach science in the same way and so he questioned his own findings: Could the healers’ increase in magnetic field oscillations during healing simply be the result of certain peripheral biophysical changes? Muscle contractions generate a magnetic field, as do changes in blood flow, the increasing or decreasing dilation of blood vessels, the body’s current volume of liquid or even the flow of electrolytes. Skin, sweat glands, change of temperature, neural induction – all generate magnetic fields. His guess was that healing resulted from a summation of multiple biological processes that are mediated magnetically.
But the possibility that healing might be a magnetic effect did not explain long-distance remote healing. In some instances, healers sent healing from thousands of miles away and the effect did not decay with distance. In one successful study of AIDS patients who improved through remote healing, the 40 healers involved in the study sent the healing to the San Francisco patients from locations all across America.13 Similar to electrical fields, magnetic fields decrease with distance. The magnetic and electrical effects were likely to be some aspect of the process, but not its central one. It was likely to be closer to a quantum field, possibly more akin to light.
Schwartz began to consider the possibility that the mechanism creating intention originated with the tiny elements of light emitted from human beings. In the mid-1970s, a German physicist named Fritz-Albert Popp had stumbled upon the fact that all living things, from the most basic of single-celled plants to the most sophisticated of organisms like human beings, emitted a constant tiny current of photons – tiny particles of light.14 He labelled them ‘biophoton emissions’ and believed that he had uncovered the primary communication channel of a living organism – that it used light as a means of signalling to itself and to the outside world.
For more than 30 years, Popp has maintained that this faint radiation, rather than biochemistry, is the true driving force in orchestrating and coordinating all cellular processes in the body. Light waves offered a perfect communication system able to transfer information almost instantaneously across an organism. Having waves, rather than chemicals, as the communication mechanism of a living being also solved the central problem of genetics – how we grow and take final shape from a single cell. It also explains how our bodies manage to carry out tasks with different body parts simultaneously. Popp theorized that this light must be like a master tuning fork setting off certain frequencies that would be followed by other molecules of the body.15
A number of biologists, such as the German biophysicist Herbert Fröhlich, had proposed that a type of collective vibration causes proteins and cells to coordinate their activities. Nevertheless, all such theories were ignored until Popp’s discoveries, largely because no equipment was sensitive enough to prove they were right.
With the help of one of his students, Popp constructed the first such machine – a photomultiplier that captured light and counted it, photon by photon. He carried out years of impeccable experimentation that demonstrated that these tiny frequencies were mainly stored and emitted from the DNA of cells. The intensity of the light in organisms was stable, ranging from a few to several hundred photons per second per square centimetre surface of the living thing – until the organism was somehow disturbed or ill, at which point the current went sharply up or down. The signals contained valuable information about the state of the body’s health and the effects of any particular therapy. Cancer victims had fewer photons, for instance. It was almost as though their light were going out.
Initially vilified for his theory, Popp was eventually recognized by the German government and then internationally. Eventually he formed the International Institute of Biophysics (IIB), composed of 15 groups of scientists from international centres all around the world, including prestigious institutions like CERN in Switzerland, Northeastern University in the USA, the Institute of Biophysics Academy of Science in Beijing, China, and Moscow State University in Russia. By the early twenty-first century, the IIB numbered at least 40 distinguished scientists from around the globe.
Could it be that these were the frequencies that mediated healing? Schwartz realized that if he was going to carry out studies of biophoton emissions, first he had to figure out how to view these tiny emissions of light. In his laboratory, Popp developed a computerized mechanism attached to a box in which a living thing, such as a plant, could be placed. The machine could count the photons and chart the amount of light emitted on a graph. But those machines only recorded photons in utter pitch blackness. Up until then, it had been impossible for scientists to witness living things actually glowing in the dark.
As Schwartz mulled over the kind of equipment that would allow him to see very faint light, he thought of state-of-the-art supercooled charge-coupled device (CCD) cameras on telescopes. This exquisitely sensitive equipment, now used to photograph galaxies deep in space, picks up about 70 per cent of any light, no matter how faint. CCD devices were also used for night-vision equipment. If a CCD camera could pick up the light from the most distant of stars, it might also be able to pick up the faint light coming off living things. However, this kind of equipment can cost hundreds of thousands of dollars and usually had to be cooled to temperatures only 100 degrees above absolute zero, to eliminate any ambient radiation emitted at room temperature. Cooling the camera down also helped to improve its sensitivity to faint light. Where on earth was he going to get hold of this kind of high-tech equipment?
Kathy Creath, a professor of optical sciences at Schwartz’s university, who shared his fascination with living light and its possible role in healing, had an idea. As it happened, she knew that the department of radiology at the National Science Foundation (NSF) in Tucson owned a low-light CCD camera, which they used to measure the light emitted from laboratory rats after being injected with phosphorescent dyes. The Roper Scientific VersArray 1300 B low-noise, high-performance CCD camera was housed in a dark room inside a black box and above a Cryotiger cooling system, which cooled temperatures to –100°C. A computer screen displayed its images. It was just what they were looking for. After Creath approached the director of the NSF project, he generously agreed to allow the two of them access to the camera during its down time.
In their first test, Schwartz and Creath placed a geranium leaf on a black platform. They took fluorescent photographs after exposures of up to five hours. When the computer displayed the final photograph, it was dazzling: a perfect image of the leaf in light, like a shadow in reverse, but in incredible detail, each of its tiniest veins delineated. Surrounding the leaf were little white spots, like a sprinkling of fairy dust – evidence of high-energy cosmic rays. With his next exposure, Schwartz used a software filter to screen out the ambient radiation. The image of the leaf was now perfect.
As they studied this latest photograph on the screen of the computer in front of them, Schwartz and Creath understood that they were making history. It was the first time a scientist had been able to witness images of the light actually emanating from a living thing.16
Now that he had equipment that captured and recorded light, Schwartz was finally able to test whether healing intention also generated light. Creath got hold of a number of healers, and asked them to place their hands on the platform underneath the camera for 10 minutes. Schwartz’s first crude images showed a rough glow of large pixilations, but they were too out of focus for him to analyse them. Next he tried placing the healers’ hands on a white background (which reflected light) rather than on a black background (which absorbed light). The images were breathtakingly clear: a stream of light flowed out of the healers’ dominant hands, almost as though it were flowing from their fingers. Schwartz now had his answer about the nature of conscious thought: healing intention creates waves of light – and, indeed, among the most organized light waves found in nature.
The theory of relativity was not Einstein’s only great insight. He had had another astonishing realization in 1924, after correspondence with an obscure Indian physicist, Satyendra Nath Bose, who had been pondering the then-new idea that light was composed of little vibrating packets called photons. Bose had worked out that, at certain points, photons should be treated as identical particles. At the time nobody believed him – nobody but Einstein, after Bose sent him his calculations.
Einstein liked Bose’s proofs and used his influence to get Bose’s theory published. Einstein also was inspired to explore whether, under certain conditions or certain temperatures, atoms in a gas, which ordinarily vibrated anarchically, might also begin to behave in synchrony, like Bose’s photons. Einstein set to work on his own formula to determine which conditions might create such a phenomenon. When he reviewed his figures, he thought he had made a mistake in his calculations. According to his results, at certain extraordinarily low temperatures, just a few kelvin above absolute zero, something really strange would begin to happen: the atoms, which ordinarily can operate at a number of different speeds, would slow down to identical energy levels. In this state, the atoms would lose their individuality and both look and behave like one giant atom. Nothing in his mathematical armamentarium could tell them apart. If this were true, he realized, he had stumbled upon an entirely new state of matter, with utterly different properties from anything known in the universe.
Einstein published his findings,17 and lent his name to the phenomenon, called a Bose–Einstein condensate, but he was never convinced that he had been right. Nor were other physicists, until more than 70 years later when, on 5 June 1995, Eric Cornell and Carl Wieman of JILA, a programme sponsored by the National Institute of Standards and Technology and the University of Colorado at Boulder, managed to cool a tiny batch of rubidium atoms down to 170 billionths of a degree above absolute zero.18 It had been quite a feat, requiring trapping the atoms in a web of laser light and then magnetic fields. At a certain point, a batch of some 2000 atoms – measuring about 20 microns, about one-fifth the thickness of a single piece of paper – began behaving differently from the cloud of atoms surrounding them, like one smeared-out single entity. Although the atoms were still part of a gas, they were behaving more like the atoms of a solid.