Полная версия
The Intention Experiment: Use Your Thoughts to Change the World
Four months later, Wolfgang Ketterle from Massachusetts Institute of Technology replicated their experiment, but with a form of sodium, for which he, as well as Cornell and Wieman, won the 2001 Nobel prize.19 Then a few years after that, Ketterle and others like him were able to reproduce the effect with molecules.20
Scientists believed that a form of Einstein and Bose’s theory could account for some of the strange properties they had begun to observe in the subatomic world: superfluidity, when certain fluids can flow without losing energy, or even spontaneously work themselves out of their containers; or superconduction, a similar property of electrons in a circuit. In superfluid or superconductor states, liquid or electricity could theoretically flow at the same pace forever.
Ketterle had discovered another amazing property of atoms or molecules in this state. All the atoms were oscillating in perfect harmony, similar to photons in a laser, which behave like one giant photon, vibrating in perfect rhythm. This organization makes for an extraordinary efficiency of energy. Instead of sending a light about 3 metres, the laser emits a wave 300 million times that far.
Scientists were convinced that a Bose–Einstein condensate was a peculiar property of atoms and molecules slowing down so much that they are almost at rest, when exposed to temperatures only a fraction above the coldest temperatures in the universe. But then Fritz-Albert Popp and the scientists working with him made the astonishing discovery that a similar property existed in the weak light emanating from organisms. This was not supposed to happen in the boiling inner world of the living thing. What is more, the biophotons he measured from plants, animals and humans were highly coherent. They acted like a single super-powerful frequency, a phenomenon also referred to as ‘superradiance’.
The German biophysicist Herbert Fröhlich had first described a model in which this type of order could be present and play a central role in biological systems. His model showed that, with complex dynamic systems like human beings, the energy within created all sorts of subtle relationships, so that it is no longer discordant.21 Living energy is able to organize to one giant coherent state, with the highest form of quantum order known to nature. When subatomic particles are said to be ‘coherent’, or ‘ordered’, they become highly interlinked by bands of common electromagnetic fields, and resonate like a multitude of tuning forks all attuned to the same frequency. They stop behaving like anarchic individuals and begin operating like one well-rehearsed marching band.
As one scientist put it, coherence is like comparing the photons of a single 60-watt light bulb to the sun. Ordinarily, light is extraordinarily inefficient. The intensity of light from a bulb is only about 1 watt per square centimetre of light – because many of the waves made by the photons destructively interfere with and cancel out each other. The light per square centimetre generated by the sun is about 6000 times stronger. But if you could get all the photons of this one small light bulb to become coherent and resonate in harmony with each other, the energy density of the single light bulb would be thousands to millions of times higher than that of the surface of the sun.22
After Popp made his discoveries about coherent light in living organisms, other scientists postulated that mental processes also create Bose–Einstein condensates. British physicist Roger Penrose and his partner, American anaesthetist Stuart Hameroff from the University of Arizona, were in the vanguard of frontier scientists who proposed that the microtubules in cells, which create the basic structure of the cells, were ‘light pipes’ through which disordered wave signals were transformed into highly coherent photons and pulsed through the rest of the body.23
Gary Schwartz had witnessed just this coherent photon stream emanating from the hands of healers. After studying the work of scientists like Popp and Hameroff, he finally had his answer about the source of healing: if thoughts are generated as frequencies, healing intention is well-ordered light.
Gary Schwartz’s creative experiments revealed to me something fundamental about the quantum nature of thoughts and intentions. He and his colleagues had uncovered evidence that human beings are both receivers and transmitters of quantum signals. Directed intention appears to manifest as both electrical and magnetic energy and to produce an ordered stream of photons, visible and measurable by sensitive equipment. Perhaps our intentions also operate as highly coherent frequencies, changing the very molecular makeup and bonding of matter. Like any other form of coherence in the subatomic world, one well-directed thought might be like a laser light, illuminating without ever losing its power.
I was reminded of an extraordinary experience Schwartz once had in Vancouver. He had been staying in the penthouse apartment suite of a downtown hotel. He had awakened at 2 a.m., as he often did, and had walked out to the balcony to have a look at the spectacular view of the city to the west, framed by the mountains. He was surprised to see how many hundreds of homes along the peninsula below him still had their lights on. He wished he had a telescope handy to see what some of the people were doing up at this late hour. But of course, if any of them had their own telescope, they would be able to see him standing there in the nude. An odd thought suddenly came to him of his own naked image flying into each window. But maybe the idea was not so fanciful. After all, he was emitting a constant stream of biophotons, all travelling at the speed of light; each photon would have travelled 186,000 miles one second later, and 372,000 miles one second after that.
His light was not unlike the photons of visible light emanating from stars in the sky. Much of the light from distant stars has been travelling for millions of years. Starlight contains a star’s individual history. Even if a star had died long before its light reached earth, its information remains, an indelible footprint in the sky.
He then had a sudden image of himself as a ball of energy fields, a little star, glowing with a steady stream of every photon his body had ever produced for more than 50 years. All the information he had been sending from the time he was a young boy in Long Island, every last thought he had ever had, was still out there, glowing like starlight. Perhaps, I thought, intention was also like a star. Once constructed, a thought radiated out like starlight, affecting everything in its path.
Notes - Chapter 2: The Human Antenna
1. All personal details about Gary Schwartz and his discoveries result from multiple interviews with him and the author, March–June 2006.
2. H. Benson et al., ‘Decreased systolic blood pressure through operant conditioning techniques in patients with essential hypertension’, Science, 1971; 173 (3998): 740–2.
3. E. E. Green, ‘Copper wall research psychology and psychophysics: subtle energies and energy medicine: emerging theory and practice’, Proceedings, First Annual Conference, International Society for the Study of Subtle Energies and Energy Medicine (ISSSEEM), Boulder, Colorado, 21–25 June 1991.
4. This research was eventually published as G. Schwartz and L. Russek, ‘Subtle energies – electrostatic body motion registration and the human antenna-receiver effect: a new method for investigating interpersonal dynamical energy system interactions’, Subtle Energies and Energy Medicine, 1996; 7 (2): 149–84.
5. E. E. Green et al., ‘Anomalous electrostatic phenomena in exceptional subjects’, Subtle Energies and Energy Medicine, 1993; 2: 69; W. A. Tiller et al., ‘Towards explaining anomalously large body voltage surges on exceptional subjects, Part I: The electrostatic approximation’, Journal of Scientific Exploration, 1995; 9 (3): 331.
6. William A. Tiller, ‘Subtle energies’, Science & Medicine, 1999, 6 (3): 28–33.
7. A. Seto et al., ‘Detection of extraordinary large biomagnetic field strength from the human hand during external qi emission’, Acupuncture and Electrotherapeutics Research International, 1992; 17: 75–94; J. Zimmerman, ‘New technologies detect effects in healing hands’, Brain/Mind Bulletin, 1985; 10 (2): 20–3.
8. B. Grad, ‘Dimensions in “Some biological effects of the laying on of hands” and their implications’, in H. A. Otto and J. W. Knight (eds.), Dimension in Wholistic Healing: New Frontiers in the Treatment of the Whole Person, Chicago: Nelson-Hall, 1979: 199–212.
9. L. N. Pyatnitsky and V. A. Fonkin, ‘Human consciousness influence on water structure’, Journal of Scientific Exploration, 1995; 9 (1): 89.
10. G. Rein and R. McCraty, ‘Structural changes in water and DNA associated with new physiologically measurable states’, Journal of Scientific Exploration, 1994; 8 (3): 438–9.
11. W. Tiller would eventually write about the effect of shielding psychics in his book Science and Human Transformation, Walnut Creek, Calif.: Pavior Publishing, 1997: 32.
12. M. Connor, G. Schwartz et al., ‘Oscillation of amplitude as measured by an extra low frequency magnetic field meter as a biophysical measure of intentionality’. Paper presented at the Toward a Science of Consciousness Conference, Tucson, Arizona, April 2006.
13. Sicher, Targ et al., ‘A randomized double-blind study’, op. cit.
14. See McTaggart, The Field, op. cit.: 39, for a full description of F.-A. Popp’s earlier work.
15. S. Cohen and F.-A. Popp, ‘Biophoton emission of the human body’, Journal of Photochemistry and Photobiology, 1997; 40: 187–9.
16. K. Creath and G. E. Schwartz, ‘What biophoton images of plants can tell us about biofields and healing’, Journal of Scientific Exploration, 2005; 19 (4): 531–50.
17. S. N. Bose, ‘Planck’s Gesetz und Lichtquantenhypothese’, Zeitschrift für Physik, 1924; 26: 178–81; A. Einstein, ‘Quantentheorie des einatomigen idealen Gases [Quantum theory of ideal monoatomic gases]’, Sitz. Ber. Preuss. Akad. Wiss. (Berlin), 1925; 23: 3.
18. C. E. Wieman and E. A. Cornell, ‘Seventy years later: the creation of a Bose-Einstein condensate in an ultracold gas’, Lorentz Proceedings, 1999; 52: 3–5.
19. K. Davis et al., ‘Bose-Einstein condensation in a gas of sodium atoms’, Physical Review Letters, 1995; 75: 3969–73.
20. M. W. Zwierlein et al., ‘Observation of Bose-Einstein condensation of molecules’, Physical Review Letters, 2003; 91: 250401.
21. H. Fröhlich, ‘Long range coherence and energy storage in biological systems’, Int. J. Quantum Chem., 1968; II: 641–9.
22. For this entire example, see Tiller, Science and Human Transformation, op. cit.: 196.
23. M. Jibu et al., ‘Quantum optical coherence in cytoskeletal microtubules: implications for brain function’, Biosystems, 1994; 32: 195–209; S. R. Hameroff, ‘Cytoplasmic gel states and ordered water: possible roles in biological quantum coherence’, Proceedings of the 2nd Annual Advanced Water Sciences Symposium, Dallas, Texas, 1996.
CHAPTER THREE
The Two-Way Street
CLEVE BACKSTER WAS AMONG THE FIRST to propose that plants are affected by human intention – a notion considered so preposterous that it was ridiculed for 40 years. Backster achieved his notoriety from a series of experiments that purported to demonstrate that living organisms read and respond to a person’s thoughts.
Plant telepathy interested me less than a tangential discovery of his that has been sidelined amid all his adverse publicity: evidence of a constant two-way flow of information between all living things. Every organism, from bacteria to human beings, appears to be in perpetual quantum communication. This relentless conversation offers a ready mechanism by which thoughts can have a physical effect.
This discovery resulted from a silly little diversion in 1966; Backster, at the time a tall, wiry man with a buzz cut and a great deal of childlike enthusiasm, was easily distracted. He often carried on working in his suite of offices when the rest of his staff had gone home and he could finally focus without the constant interruptions of colleagues and the tumultuous daytime activity of Times Square, four storeys below.1
Backster had made his name as the country’s leading lie-detector expert. During the Second World War, he had been fascinated by the psychology of lying, and the use of hypnosis and ‘truth serum’ interrogation in counter-intelligence, and he had brought these twin fascinations to bear in refining the polygraph test to a high psychological art. He had launched his first programme with the CIA for counter-intelligence several years after the war, and then went on to found the Backster School of Lie Detection, still the world’s leading school teaching polygraph techniques some 50 years after it first opened its doors.
One morning in February, after working all night, Backster was taking a coffee break at 7 a.m. He was about to water the Dracaena and rubber plant in his office. As he filled up his watering can, he wondered if it might be possible to measure the length of time it would take water to travel up the stem of a plant from the roots and reach the leaves, particularly in the Dracaena, a cane plant with an especially long trunk. It occurred to him that he could test this by connecting the Dracaena to one of his polygraph machines; once the water reached the spot between the electrodes, the moisture would contaminate the circuit and be recorded as a drop in resistance.
A lie detector is sensitive to the slightest change in the electrical conductivity of skin, which is caused by increased activity of the sweat glands, which in turn are governed by the sympathetic nervous system. The polygraph galvanic skin response (GSR) portion of the test displays the amount of the skin’s electrical resistance, much as an electrician’s ohmmeter records the electrical resistance of a circuit. A lie detector also monitors changes in blood pressure, respiration, and the strength and rate of the pulse. Low levels of electrical conductivity indicate little stress and a state of calm. Higher electrodermal activity (EDA) readings indicate that the sympathetic nervous system, which is sensitive to stress or certain emotional states, is in overdrive – as would be the case when someone is lying. A polygraph reading can offer evidence of stress to the sympathetic nervous system even before the person being tested is consciously aware of it.
In 1966, the state-of-the-art technology consisted of a set of electrode plates, which were attached to two of a subject’s fingers, and through which a tiny current of electricity was passed. The smallest increases or decreases in electrical resistance were picked up by the plates and recorded on a paper chart, on which a pen traced a continuous, serrated line. When someone lied or in any way experienced a surge of emotion (such as excitement or fear), the size of the zigzag would dramatically increase and the tracing would move to the top of the chart.
Backster sandwiched one of the long, curved leaves of the Dracaena between the two sensor electrodes of a lie detector and encircled it with a rubber band. Once he watered the plant, what he expected to see was an upward trend in the ink tracing on the polygraph recording paper, corresponding to a drop in the leaf ’s electrical resistance as the moisture content increased. But as he poured in the water, the very opposite occurred. The first part of the tracing began heading downward and then displayed a short-term blip, similar to what happens when a person briefly experiences a fear of detection.
At the time Backster thought he was witnessing a human-style reaction, although he would later learn that the waxy insulation between the cells in plants causes an electrical discharge that mimics a human stress reaction on polygraph instruments. He decided that if the plant were indeed displaying an emotional reaction, he would have to come up with some major emotional stimulus to heighten this response.
When a person takes a polygraph test, the best way to determine if he is lying is to ask a direct and pointed question, so that any answer but the truth will cause an immediate, dramatic stress reaction in his sympathetic nervous system: ‘Was it you who fired the two bullets into Joe Smith?’
In order to elicit the equivalent of alarm in a plant, Backster knew he needed somehow to threaten its well-being. He tried immersing one of the plant’s leaves in a cup of coffee, but that did not cause any interesting reaction on the tracing – only a continuation of the downward trend. If this were the tracing of a human being, Backster would have concluded that the person being monitored was tired or bored. It was obvious to him that he needed to pose an immediate and genuine threat: he would get a match and burn the electroded leaf.
At the very moment he had that thought, the recording pen swung to the top of the polygraph chart and nearly jumped off. He had not burned the plant; he had only thought about doing so. According to his polygraph, the plant had perceived the thought as a direct threat and registered extreme alarm. He ran to his secretary’s desk in a neighbouring office for some matches. When he returned, the plant was still registering alarm on the polygraph. He lit a match and flickered it under one of the leaves. The pen continued on its wild, zigzag course. Backster then returned the matches to his secretary’s desk. The tracing calmed down and began to flat-line.
He hadn’t known what to make of it. He had long been drawn to hypnosis and ideas about the power of thought and the nature of consciousness. He had even performed a number of experiments with hypnosis during his work with the Army Counter Intelligence Corps and the CIA, as part of a campaign designed to detect the use of hypnosis techniques in Russian espionage.
But this was something altogether more extraordinary. This plant, it seemed, had read his thoughts. It wasn’t even as though he particularly liked plants. This only could have occurred if the plant possessed some sort of sophisticated extrasensory perception. The plant somehow must be attuned to its environment, able to receive far more than pure sensory information from water or light.
Backster modified his polygraph equipment to amplify electrical signals so that they would be highly sensitive to the slightest electrical change in the plants. He and his partner, Bob Henson, set about replicating the initial experiment. Backster spent the next year and a half frequently monitoring the reactions of the other plants in the office to their environment. They discovered a number of characteristics. The plants grew attuned to the comings and goings of their main caretaker. They also maintained some sort of ‘territoriality’ and so did not react to events in the other offices near Backster’s lab. They even seemed to tune in to Pete, his Doberman Pinscher, who spent his days at the office.
Most intriguing of all, there seemed to be a continuous two-way flow of information between the plants and other living things in their environment. One day, when Backster boiled his kettle to make coffee, he found he had put in too much water. But when he poured the residue down the sink, he noticed that the plants registered an intense reaction.
The sink was not the most hygienic; indeed, his staff had not cleaned the drain for several months. He decided to take some samples from the drain and examine them under a microscope, which showed a jungle of bacteria that ordinarily lives in the waste pipes of a sink. When threatened by the boiling water, had the bacteria emitted a type of mayday signal before they died, which had been picked up by the plants?
Backster, who knew he would be ridiculed if he presented findings like these to the scientific community, enlisted an impressive array of chemists, biologists, psychiatrists, psychologists and physicists to help him design an airtight experiment. In his early experiments, Backster had relied upon human thought and emotion as the trigger for reactions in the plants. The scientists discouraged him from using intention as the stimulus of the experiment, because it did not lend itself to rigorous scientific design. How could you set up a control for a human thought – an intention to harm, say? The orthodox scientific community could easily pick holes in his study. He had to create a laboratory barren of any other living things besides the plants to ensure that the plants would not be, as it were, distracted.
The only way to achieve this was to automate the experiment entirely. But he also needed a potent stimulus. He tried to think of the one act that would stir up the most profound reaction, something that would evoke the equivalent in the plants of dumbfounded horror. It became clear that the only way to get unequivocal results was to commit the equivalent of mass genocide. But what could he kill en masse that would not arouse the ire of anti-vivisectionists or get him arrested? It obviously could not be a person or a large animal of any variety. He did not even want to kill members of the usual experimental population, like rats or guinea pigs. The one obvious candidate was brine shrimp. Their only purpose, as far as he could tell, was to become fodder for tropical fish. Brine shrimp were already destined for the slaughterhouse. Only the most ardent anti-vivisectionist could object.
Backster and Henson rigged up a gadget that would randomly select one of six possible moments when a small cup containing the brine shrimp would invert and tip its contents into a pot of continuously boiling water. The randomizer was placed in the far room in his suite of six offices, with three plants attached to polygraph equipment in three separate rooms at the other end of the laboratory. His fourth polygraph machine, attached to a fixed valve resistor to ensure that there was no sudden surge of voltage from the equipment, acted as the control.
Microcomputers had yet to be invented, as Backster set up his lab in the late sixties. To perform the task, Backster created an innovative mechanical programmer, which operated on a time-delay switch, to set off each event in the automation process. After flipping the switch, Backster and Henson would leave the lab, so they and their thoughts would not influence the results. He had to eliminate the possibility that the plants might be more attuned to him and his colleague than a minor murder of brine shrimp down the hallway.
Backster and Henson tried their test numerous times. The results were unambiguous: the polygraphs of the electroded plants spiked a significant number of times just at the point when the brine shrimp hit the boiling water. Years after he had made this discovery – and after he became a great fan of Star Wars – he would think of this moment as one in which his plants picked up a major disturbance in the Force, and he had discovered a means of measuring it.2 If plants could register the death of an organism three doors away, it must mean that all life forms were exquisitely in tune with each other. Living things must be registering and passing telepathic information back and forth at every moment, particularly at moments of threat or death.
Backster published the results of his experiment in several respected journals of psychic research and gave a modest presentation before the Parapsychology Association during its tenth annual meeting.3 Parapsychologists recognized Backster’s contribution and replicated it in a number of independent laboratories, notably that of Alexander Dubrov, a Russian doctor of botany and plant physiology.4 It was even glorified in a bestselling book, The Secret Life of Plants.5 But among the mainstream scientific community, his research was disparaged as ludicrous, largely because he was not a traditional scientist, and he was ridiculed for what became known as ‘The Backster Effect’. In 1975, Esquire magazine even awarded him one of its 100 Dubious Achievement Awards: ‘Scientist claims yogurt talks to itself’.6