bannerbanner
Logic: Deductive and Inductive
Logic: Deductive and Inductiveполная версия

Полная версия

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
18 из 31

The Method of Gradations, the arranging of any phenomena to be studied in series, according to the degree in which some character is exhibited, is, perhaps, the most definite device in the Art of Discovery. (Bain: Induction, c. 6, and App. II.) If the causes are unknown it is likely to suggest hypotheses: and if the causes are partly known, variation in the character of the series is likely to indicate a corresponding variation of the conditions.

§ 5. The Canon Of Residues.

Subduct from any phenomenon such part as previous inductions have shown to be the effect of certain antecedents, and the residue of the phenomenon is the effect of the remaining antecedents.

The phenomenon is here assumed to be an effect: a similar Canon may be framed for residuary causes.

This also is not a fresh method, but a special case of the method of Difference. For if we suppose the phenomenon to be p q r, and the antecedent to be A B C, and that we already know B and C to have (either severally or together) the consequents q r, in which their efficacy is exhausted; we may regard



as an instance of the absence of p obtained deductively from the whole phenomenon



by our knowledge of the laws of B and C; so that



is an instance of the presence of p, differing otherwise from



in nothing except that A is also present. By the Canon of Difference, therefore A is the cause of p. Or, again, when phenomena thus treated are strictly quantitative, the method may be based on Prop. III. (b), ch. xv. § 7.

Of course, if A can be obtained apart from B C and directly experimented with so as to produce p, so much the better; and this may often be done; but the special value of the method of Residues appears, when some complex phenomenon has been for the most part accounted for by known causes, whilst there remains some excess, or shortcoming, or deviation from the result which those causes alone would lead us to expect, and this residuary fact has to be explained in relation to the whole. Here the negative instance is constituted by deduction, showing what would happen but for the interference of some unknown cause which is to be investigated; and this prominence of the deductive process has led some writers to class the method as deductive. But we have seen that all the Canons involve deduction; and, considering how much in every experiment is assumed as already known (what circumstances are 'material,' and when conditions may be called 'the same'), the wonder is that no one has insisted upon regarding every method as concerned with residues. In fact, as scientific explanation progresses, the phenomena that may be considered as residuary become more numerous and the importance of this method increases.

Examples: The recorded dates of ancient eclipses having been found to differ from those assigned by calculation, it appears that the average length of a day has in the meanwhile increased. This is a residuary phenomenon not accounted for by the causes formerly recognised as determining the rotation of the earth on its axis; and it may be explained by the consideration that the friction of the tides reduces the rate of the earth's rotation, and thereby lengthens the day. Astronomy abounds in examples of the method of Residues, of which the discovery of Neptune is the most famous.

Capillarity seems to be a striking exception to the principle that water (or any liquid) 'finds its level,' that being the condition of equilibrium; yet capillarity proves to be only a refined case of equilibrium when account is taken of the forces of adhesion exerted by different kinds of bodies in contact.

"Many of the new elements of Chemistry," says Herschel, "have been detected in the investigation of residual phenomena." Thus, Lord Rayleigh and Sir W. Ramsay found that nitrogen from the atmosphere was slightly heavier than nitrogen got from chemical sources; and, seeking the cause of this difference, discovered argon.

The Economist shows that when a country imports goods the chief means of paying for them is to export other goods. If this were all, imports and exports would be of equal value: yet the United Kingdom imports about £400,000,000 annually, and exports about £300,000,000. Here, then, is a residuary phenomenon of £100,000,000 to be accounted for. But foreign countries owe us about £50,000,000 for the use of shipping, and £70,000,000 as interest on the capital we have lent them, and £15,000,000 in commissions upon business transacted for them. These sums added together amount to £135,000,000; and that is £35,000,000 too much. Thus another residuary phenomenon emerges; for whilst foreigners seem to owe us £435,000,000 they only send us £400,000,000 of imports. These £35,000,000 are accounted for by the annual investment of our capital abroad, in return for which no immediate payment is due; and, these being omitted, exports and imports balance. Since this was written the figures of our foreign trade have greatly risen; but the character of the explanation remains the same.

When, in pursuing the method of Variations, the phenomena compared do not always correspond in their fluctuations, the irregular movements of that phenomenon which we regard as the effect may often be explained by treating them as residuary phenomena, and then seeking for exceptional causes, whose temporary interference has obscured the influence of the general cause. Thus, returning to the diagram of the Price of Tea in § 4, it is clear that generally the price falls as the duty falls; but in Mr. Denyer's more minutely wrought diagram, from which this is reduced, it may be seen that in 1840 the price of tea rose from 3s. 9d. to 4s. 9d. without any increase of duty. This, however, is readily explained by the Chinese War of that year, which checked the supply. Again, from 1869 to 1889 the duty was constant, whilst the price of tea fell as much as 8d. per lb.; but this residuary phenomenon is explained by the prodigiously increased production of tea during that period in India and Ceylon.

The above examples of the method of Residues are all quantitative; but the method is often employed where exact estimates are unobtainable. Thus Darwin, having found certain modifications of animals in form, coloration and habits, that were not clearly derivable from their struggle for existence in relation to other species or to external conditions, suggested that they were due to Sexual Selection.

The 'vestiges' and 'survivals' so common in Biology and Sociology are residuary phenomena. It is a general inference from the doctrine of Natural Selection that every organ of a plant, animal, or society is in some way useful to it. There occur, however, organs that have at present no assignable utility, are at least wasteful, and sometimes even injurious. And the explanation is that formerly they were useful; but that, their uses having lapsed, they are now retained by the force of heredity or tradition. Either they are not injurious enough to be eliminated by natural selection; or they are correlated with other organs, whose utility outweighs their disutility.

CHAPTER XVII

COMBINATION OF INDUCTION WITH DEDUCTION

§ 1. We have now reviewed Mill's five Canons of Inductive Proof. At bottom, as he observes, there are only two, namely, Agreement and Difference: since the Double Method, Variations and Residues are only special forms of the other two. Indeed, in their function of proof, they are all reducible to one, namely, Difference; for the cogency of the method of Agreement (as distinguished from a simple enumeration of instances agreeing in the coincidence of a supposed cause and its effect), depends upon the omission, in one instance after another, of all other circumstances; which omission is a point of difference.

The Canons are an analysis of the conditions of proving directly (where possible), by means of observation or experiment, any proposition that predicates causation. But if we say 'by means of observation or experiment,' it is not to be understood that these are the only means and that nothing else is involved; for it has been shown that the Law of Causation is itself an indispensable foundation of the evidence. In fact Inductive Logic may be considered as having a purely formal character. It consists (1) in a statement of the Law of Cause and Effect; (2) in certain immediate inferences from this Law, expanded into the Canons; (3) in the syllogistic application of the Canons to special predications of causation by means of minor premises, showing that certain instances satisfy the Canons.

At the risk of some pedantry, we may exhibit the process as follows (cf. Prof. Ray's Logic: Appendix D):

Whatever relation of events has certain marks is a case of causation;

The relation A: p has some or all of these marks (as shown by observation and by the conformity of instances to such or such a Canon):

Therefore, the relation A: p is a case of causation. Now, the parenthesis, "as shown by the conformity, etc.," is an adscititious member of an Epicheirema, which may be stated, as a Prosyllogism, thus:

If an instance, etc. (Canon of Difference);

The instances

are of the kind required:

Therefore, A, present where p occurs and absent where it does not occur, is an indispensable antecedent of p.

Such is the bare Logic of Induction: so that, strictly speaking, observation or experiment is no part of the logic, but a means of applying the logic to actual, that is, not merely symbolical, propositions. The Formal Logic of Induction is essentially deductive; and it has been much questioned whether any transition from the formal to the material conditions of proof is possible. As long as we are content to illustrate the Canons with symbols, such as A and p, all goes well; but can we in any actual investigation show that the relevant facts or 'instances' correspond with those symbols?

In the first place, as Dr. Venn shows, natural phenomena want the distinctness and capability of isolation that belong to symbols. Secondly, the observing whether instances conform to a Canon, must always be subject at last to the limits of our faculties. How can we ascertain exact equality, immediate sequence? The Canon of Difference, in its experimental application, is usually considered the most cogent sort of proof: yet when can the two sequent instances, before and after the introduction of a certain agent, be said to differ in nothing else? Are not earth and stars always changing position; is not every molecule in the room and apparatus always oscillating? It is true that our senses are now aided by elaborate instruments; but the construction of these depends on scientific theories, which again depend on experiments.

It is right to touch upon this well-known sceptical topic; but to insist much upon it is not a sign of good sense. The works of Herschel, Whewell, and Jevons should be consulted for the various methods of correcting observations, by repeating them, averaging them, verifying one experimental process by another, always refining the methods of exact measurement, multiplying the opportunities of error (that if any exist it may at last show itself), and by other devices of what may be called Material Logic or Methodology. But only direct experience and personal manipulation of scientific processes, can give a just sense of their effectiveness; and to stand by, suggesting academic doubts, is easier and more amusing.

§ 2. Still, it is not so much in laws based upon direct observation or experiment, that the material validity of scientific reasoning appears, as in the cumulative evidence that arises from the co-ordination of laws within each science, and the growing harmony and coherence of all sciences. This requires a more elaborate combination of deduction with observation and experiment. During the last three hundred years many departments of science have been reduced under principles of the greatest generality, such as the Conservation of Energy, the Law of Gravitation, the Undulatory theory of Light, the Law of combining Equivalents, and the Theory of Natural Selection; connecting and explaining the less general laws, which, again, are said to connect and explain the facts. Meanwhile, those sciences that were the first to make progress have helped to develop others which, like Biology and Sociology, present greater difficulties; and it becomes more and more apparent that the distinctions drawn among sciences are entirely for the convenience of study, and that all sciences tend to merge in one universal Science of Nature. Now, this process of the 'unification of knowledge' is almost another name for deduction; but at the same time it depends for its reality and solidity upon a constant reference to observation and experiment. Only a very inadequate notion of it can be given in the ensuing chapters.

We saw in chap. xiv. § 6, that when two or more agents or forces combine to produce a phenomenon, their effects are intermixed in it, and this in one of two ways according to their nature. In chemical action and in vegetable and animal life, the causal agents concerned are blended in their results in such a way that most of the qualities which they exhibited severally are lost, whilst new qualities appear instead. Thus chlorine (a greenish-yellow gas) and sodium (a metal) unite to form common salt NaCl; which is quite unlike either of them: a man eats bread, and it becomes muscle, nerve and bone. In such cases we cannot trace the qualities of the causal agents in the qualities of the effects; given such causes, we can prove experimentally, according to the canons of induction, that they have such effects; but we may not be able in any new case to calculate what the effects will be.

On the other hand, in Astronomy and Physics, the causes treated of are mechanical; at least, it is the aim of Physics to attain to a mechanical conception of phenomena; so that, in every new combination of forces, the intermixed effect, or resultant, may be calculated beforehand; provided that the forces concerned admit of being quantitatively estimated, and that the conditions of their combination are not so complex as to baffle the powers of mathematicians. In such cases, when direct observation or experiment is insufficient to resolve an effect into the laws of its conditions, the general method is to calculate what may be expected from a combination of its conditions, as either known or hypothetically assumed, and to compare this anticipation with the actual phenomenon.

§ 3. This is what Mill calls the Direct Deductive Method; or, the Physical Method, because it is so much relied on in treating of Light, Heat, Sound, etc.; it is also the method of Astronomy and much used in Economics: Deduction leads the way, and its results are tested inductively by experiments or observations. Given any complex mechanical phenomenon, the inquirer considers—(1) what laws already ascertained seem likely to apply to it (in default of known laws, hypotheses are substituted: cf. chap. xviii.); he then—(2) computes the effect that will follow from these laws in circumstances similar to the case before him; and (3) he verifies his conclusion by comparing it with the actual phenomenon.

A simple example of this method is the explanation of the rise of water in the 'common pump.' We know three laws applicable to this case: (a) that the atmosphere weighs upon the water outside the pump with a pressure of 15 lb. to the square inch; (b) that a liquid (and therefore the water) transmits pressure equally in all directions (upwards as well as downwards and sideways); and (c) that pressure upon a body in any direction, if not counteracted by an opposite pressure, produces motion. Hence, when the rise of the piston of the pump removes the pressure upon the water within the cylinder, tending to produce a vacuum there, this water is pushed up by the pressure of the air upon the water outside the cylinder, and follows the rising piston, until the column of water inside the cylinder exerts a pressure equal to that of the atmosphere upon an equal area. So much for the computation; does it correspond with the fact? It is found that at the sea level water can be pumped to the height of 33 ft; and that such a column of water has a pressure of 15 lb. to the square inch. We may show further that, at the sea level, spirits of wine may be pumped higher according to its less specific gravity; and that if we attempt to pump water at successive altitudes above the sea level, we can only raise it to less and less heights, corresponding with the lessened atmospheric pressure at those altitudes, where the column of air producing the pressure is shorter. Finally, if we try to work a pump, having first produced a vacuum over the water outside the cylinder, we shall find that the water inside will not rise at all; the piston can be raised, but the water does not follow it. The verification thus shows that the computed effect corresponds with the phenomenon to be explained; that the result does not depend upon the nature of water only, but is true (allowing for differences of specific gravity) of other liquids; that if the pressure of the outside air is diminished, the height of pumping is so too (canon of Variations); and that if that pressure is entirely removed, pumping becomes impossible (canon of Difference).

Any text-book of Astronomy or Physics furnishes numerous illustrations of the deductive method. Take, for example, the first chapter of Deschanel's Optics, where are given three methods of determining the velocity of Light. This was first deduced from observation of Jupiter's satellites. The one nearest the planet passes behind it, or into its shadow, and is eclipsed, at intervals of about 42½ hours. But it can be shown that, when Jupiter and the Earth are nearest together on the same side of the Sun, an eclipse of this satellite is visible from the earth 16 min. 26.6 sec. earlier than when Jupiter and the earth are furthest apart on opposite sides of the Sun: 16 min. 26.6 sec, then, is the time in which light traverses the diameter of the Earth's orbit. Therefore, supposing the Earth's distance from the Sun to be 92 millions of miles, light travels about 186,000 miles a second. Another deduction, agreeing with this, starts from the fact of aberration, or the displacement of the apparent from the actual position of the stars in the direction of the earth's motion. Aberration depends partly on the velocity of light, partly on the velocity of the Earth; and the latter being known, the former can be computed. Now, these two deductive arguments, verifying each other, have also been verified experimentally. Foucault's experiment to measure the velocity of light is too elaborate to be described here: a full account of it will be found in the treatise above cited, § 687.

When the phenomena to be explained are of such a character, so vast in extent, power or duration, that it is impossible, in the actual circumstances of the case, to frame experiments in order to verify a deductive explanation, it may still be possible to reproduce a similar phenomenon upon a smaller scale. Thus Monge's explanation of mirage by the great heat of the desert sand, which makes the lowest stratum of air less dense than those above it, so that rays of light from distant objects are refracted in descending, until they are actually turned upwards again to the eye of the beholders, giving him inverted images of the objects as if they were reflected in water, is manifestly incapable of being verified by experiment in the natural conditions of the phenomenon. But by heating the bottom of "a sheet-iron box, with its ends cut away," the rarefied air at the bottom of the box may sometimes be made to yield reflections; and this shows at least that the supposed cause is a possible one (Deschanel, Optics, § 726). Similarly as to the vastest of all phenomena, the evolution of the stellar system, and of the solar system as part of it, from an immense cloudlike volume of matter: H. Spencer, in his Essay on The Nebular Hypothesis, says, amidst a great array of deductive arguments from mechanical principles, that "this a priori reasoning harmonises with the results of experiment. Dr. Plateau has shown that when a mass of fluid is, as far as may be, protected from the action of external forces, it will, if made to rotate with adequate velocity, form detached rings; and that these rings will break up into spheroids, which turn on their axes in the same direction with the central mass." The theory of the evolution of species of plants and animals by Natural Selection, again, though, of course, it cannot be verified by direct experiment (since experiment implies artificial arrangement), and the process is too slow for observation, is, nevertheless, to some extent confirmed by the practice of gardeners and breeders of animals: since, by taking advantage of accidental variations of form and colour in the plants or animals under their care, and relying on the inheritability of these variations they obtain extensive modifications of the original stocks, and adapt them to the various purposes for which flowers and cereals, poultry, dogs and cattle are domesticated. This shows, at least, that living forms are plastic, and extensively modifiable in a comparatively short time.

§ 4. Suppose, however, that, in verifying a deductive argument, the effect as computed from the laws of the causes assigned, does not correspond with the facts observed: there must then be an error somewhere. If the fact has been accurately observed, the error must lie either in the process of deduction and computation, or else in the premises. As to the process of deduction, it may be very simple and easily revised, as in the above explanation of the common pump; or it may be very involved and comprise long trains of mathematical calculation. If, however, on re-examining the computations, we find them correct, it remains to look for some mistake in the premises.

(1) We may not have accurately ascertained the laws, or the modes of operation, or the amounts of the forces present. Thus, the rate at which bodies fall was formerly believed to vary in proportion to their relative weights; and any estimate based upon this belief cannot agree with the facts. Again, the corpuscular theory of light, namely, that the physical cause of light is a stream of fine particles projected in straight lines from the luminous object, though it seemed adequate to the explanation of many optical phenomena, could not be made to agree with the facts of interference and double refraction.

(2) The circumstances in which the agents are combined may not have been correctly conceived. When Newton began to inquire whether the attraction of the earth determined the orbit of the moon, he was at first disappointed. "According to Newton's calculations, made at this time," says Whewell, "the moon, by her motion in her orbit, was deflected from the tangent every minute through a space of thirteen feet. But by noticing the space which bodies would fall in one minute at the earth's surface, and supposing this to be diminished in the ratio of the inverse square, it appeared that gravity would, at the moon's orbit, draw a body through more than fifteen feet." In view of this discrepancy he gave up the inquiry for sixteen years, until in 1682, having obtained better data, he successfully renewed it. "He had been mistaken in the magnitude of the earth, and consequently in the distance of the moon, which is determined by measurements of which the earth's radius is the base." It was not, therefore, a mistake as to the law or as to the nature of the forces concerned (namely, the law of the inverse square and the identity of celestial with terrestrial gravity), but as to the circumstances in which the agents (earth and moon) were combined, that prevented his calculations being verified. (Hist. Ind. Sc.: VII. ii. 3.)

На страницу:
18 из 31