bannerbanner
«Змей, охраняющий Шамбалу» 8-я книга
«Змей, охраняющий Шамбалу» 8-я книга

Полная версия

«Змей, охраняющий Шамбалу» 8-я книга

Язык: Русский
Год издания: 2023
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
2 из 7

Оставшаяся в физическом теле (в материальном теле) энергия Упа-праньднананджал, не относится к холодной плазме циркулирующей по магнитным силовым линиям, посколько по своей структуре она тоже энергия, и тоже содержится в атомах, но эти атомы не входят в число нагретых атомов до четвертого агрегатного состояния (плазмы).

Вышедшие из физического тела конструктивные части (электромагнитные составляющие) фантомного тела человека, имеют вес, очень малый по сравнению с физическим телом человека (из-за огромной разницы в количестве атомов), но именно этот вес имеет отношение к экспериментам американского ученого Мак Дугласа, который взвешивал на весах тела умирающих людей в момент биологической смерит, и тем самым он пытался установить вес души, исходя из стереотипов того, что после биологической смерти душа выходила из бренного (материального тела). Несмотря на «установленный» вес облегчения физического (материального) тела на 21 грамм и откидывая в сторону недоумение о том почему за 100 лет никто из ученых объективно не перепроверил опыты Мак Дугласа, с целью подтвердить или, наоборот, опровергнуть выводы Мак Дугласа, я отношу душу к конструктивной части абсолютно черного тела (термоядерному реактору или нематериальному уму человека).

Также я могу дополнить механизм опытов Мак Дугласа и тем, что тело человека возможно и повторно «облегчить» в невидимом для глазу процессу. Никакой загадки в этом нет, поскольку из материального тела человека можно «отжать» Упа-прануджананджал (энергию). Я приведу сейчас механизм понимания из книги «Энергия будущего», хоть в тексе автора и не идет речи о физическом теле человека. Итак, цитирую:

(Прошу учитывать, что книга содержит знания 40-ней давности, и год ее выпуска 1980 года, а сегодня 04 ноября 2021 года).

– «Вначале вспомнил, что такое энергия вообще. Впервые это понятие будто бы появилось в трудах Аристотеля более 2000 лет назад. Энергия – слово греческое и состоит из двух простых слов. «Эн» – что означает «в», «содержание», и «эрг» – «работа». А всё вместе означает способность тела совершать работу.

Энергия есть не что иное, как форма движения материи. Существует много видов энергии, а вот единой классификации их пока еще нет. Разные ученые каждый по своему систематизирует ее виды. Мы же приведем одну из таких классификаций. Итак, вот что в нее входит.

Химическая энергия – это энергия, освобождающаяся при изменении структуры электронных оболочек молекул.

Тепловая энергия – энергия хаотического движения молекул и других частиц вещества.

Механическая энергия – это энергия свободного движения тел.

Сюда же входит электрическая, электромагнитная, гравистатическая, электростатическая, магнитностатическая, мезонная, аннигиляционная и, наконец, ядерная.

Человечество освоило большую часть перечисленных видоэнегий, на что ушло несолько тысяч лет. Вначале это была энергия Солнца. Затем им был приручен огонь. За ним энергия падающей воды. Наконец, наступил век пара и электричества. А несколько десятков лет назад человек перешагнул еще один рубеж и освоил энергию ядерную, или атомную, что одно и тоже.

Что же такое атомная энергия? Чтобы узнать, что это такое, лучше, пожалуй, напомнить о более привычной форме энергии – химической, и от нее перейти к атомной.

Мы знаем, что в угле, нефти, газе скрыта энергия. Это и есть химическая энергия. Каким же образом освобождается она из перечисленных выше видов топлива?

Представьте себе, что мы взяли 10 гирь по одному килограмму каждая, взвесили их по отдельности и убедились, что каждая гиря вести точно один килограмм. Затем сложили их вместе и, взвесив, получили общий вес не 10, а 9,9 килограмма! Невероятно? Да, конечно, но подобное явление с «исчезновением» массы проявляется ежечасно, ежесекундно и не в лабораторных условиях, а в топках, где горят уголь и нефть, в газовых плитах при сгорании газа. Известно, что горение, скажем, угля – это процесс (реакция) соединения углерода с кислородом с образованием углекислого газа. При сгорании каждых 12 килограммов углерода расходуется 32 килограмма кислорода. И мы вправе ожидать, что в результате этой реакции образуется 44 килограмма углекислого газа.

Но проведем такой воображаемый опыт. Поместим в герметичном сосуде те же 12 килограммов углерода и 32 килограмма кислорода, взвесим сосуд и убедимся, что суммарный вес составляет 44 килограмма. Теперь каким-либо способом (нам все равно, каким, опыт воображаемый) подожжем углерод и проведем полностью реакцию соединения углерода с кислородом. Поскольку сосуд герметичный и ни во время горения, ни после него не выходили никакие вещества, то взвешивание его после реакции должно дать все те же 44 килограмма, теперь уже в виде углекислого газа. Взвесив же сосуд, мы дивимся, что углекислого газа не 44 килограмма, а примерно на 4 миллионные доли 4∙ грамма. В чем же тут дело? Куда делась эта недостающая часть реагирующих веществ?

Все дело в том, что при реакции горения образуется не только углекислый газ, но и выделяется энергия. Вот на неё-то и израсходованы 4∙ грамма массы!

Энергия, как оказывается, самым непосредственным образом связана с массой. Этот всеобщий закон связи массы и энергии был открыт и сформулирован создателем теории относительности А. Эйнштейном. Согласно этому закону массе вещества в один грамм соответствует энергия 21,5 миллиарда килокалорий. Одна килокалория (ккал) – это количество тепла, необходимое для нагревания одного килограмма воды на один градус. Эту величину можно получить и из нашего воображаемого опыта, если разделить выделившуюся энергию на уменьшение массы.

Закон Эйнштейна носит всеобщий характер. Так, при любой химической реакции с выделением энергии уменьшается масса, и, наоборот, в реакции с поглощением энергии, масса продуктов, получающих в результате реакции возрастает. Например, в реакции соединения водорода и кислорода масса получаемой воды меньше, чем сумма масс водорода и кислорода, взятых в отдельности, но при этой реакции выделяется энергия. Если теперь, с помощью электрического тока провести электролиз какого-то количества воды, то есть разложить её на водород и кислород, то сумма масс их будет больше, чем исходная масса воды. Однако, при этом на разложение воды затрачено некоторое количество энергии. В этом примере с получением и разложением воды соотношение между изменением массы и величиной выделившейся и поглощенной энергии будет таким же, как в реакции горения углерода, а именно:: изменению массы в один грамм соответствует энергия в 21,5 миллиарда килокалорий.

Эта величина очень большая. Если б можно было перевести всю массу одного грамма вещества в энергию, её хватило бы на обеспечение жизни 5-10 человек на протяжении всего их существования. К сожалению пока это область фантастики.

Это информации я полагаю достаточно для того, чтобы понять смысл Упа-праныджананджал, которую как энергию можно «выудить» из материального тела человека (трупа), и тем самым повторно облегчить вес материального тела.

Теперь я вновь вернусь к плазме, которая является ядрами атомов (ионами) и электронами, но только пока не в техническом понимании, например, из чего состоят ионы (ядра атомов), типа протонов и нейтронов, а с иным описанием характеристик плазмы.

Ввиду отсутствия у меня каких-либо учебников о плазме, я пока использую заметку в журнале, для любителей радиоэлектроники, при чем автор заметки сам является любителем радиоэлектроники.

На что следует обратить внимание в его заметке.

Во-первых, это на то, что в тексте (заметке) речь идет о плазме, не находящейся внутри магнитных силовых линий. Этим фактором обусловлено «вылетение» озона в текст о плазме.

Во-вторых, следует обратить внимание на то, как именно плазма воспроизводить звук, хоть автор и не слишком детально вдается в подробности. То есть необходимо уловить смысл образования акустических волн как физического явления, так как в дальнейшем я буду это «применять» на собственный термин (по аналогии) – биоакустические звуковые волны.

В первых частях книги, я упоминал о том, что в человеке есть некий «прибор», способный генерировать и излучать в окружающее пространство, биоакустические звуковые волны на частоте ультразвука. На день сегодняшний, я предполагаю, что этим неким прибором, как минимум в некоторой его конструктивной части, является холодная плазма. Другой его (прибора) конструктивной частью являются магнитные линии.

Несмотря на то, что автор текста указывает на необходимость иметь регулируемый источник питания, обеспечивающий питание системы плазменной акустики с электродами для источника плазмы, и соответственно, он автоматически подразумевает наличие розетки с электричеством откуда будетзапитываться система плазменной акустики, в моем случае я пока никак не высказываюсь о «включении» в сеть для подачи напряжения тока, некоего прибора, вырабатывающего биоакустические звуковые волны. Пока я этот момент отложил до разбора нервного замыкания, поскольку это области наук по физиологии, биофизике, физике электричества, а холодная плазма относится к ядерной физике и в совокупности с фактором проводимости электрического тока по холодной плазме, то и к области физики электричества.

Поскольку нервное замыкание подобно короткому замыканию в физике электричества, то помимо физики мне необходимо соблюдать строгую синхронность с пониманием наук психиатрия и психология, поскольку все это между собой взаимосвязано. И вот чтоб все это пока не смешивать в одну кучу (длинная логика), я пока разбираю исключительно характеристики плазмы.

Третий момент, на который я прошу обратить внимание в заметке, так это на упоминание автором того, что он делает вывод о том, что плазма может менять цвета испускаемого цвета (что зависит от условий).

Это обстоятельство необходимо учесть для того, что в будущем, я буду разбирать весь спектр радуги, о котором я писал ранее, и который соотнесен к цветовым изображениям чакр: муладхара (красный), свадхистана (оранжевый), манипура (желтый), анахата (зеленый), вишудха (голубой), аджна (синий), сахасрара (фиолетовый).

То есть, по логике вещей, каналы нади (магнитные силовые линии), содержащие в себе прану (холодную плазму), пересекаются в с вышеуказанными чакрами, которые я ранее обозначил как узлы или пучности стоячей волны звука, а в физиологии как активации каких-либо нервных систем.

Но сейчас пока о плазме, и я цитирую текст (заметку) автора (радиолюбителя):

Ионофон: плазменный динамик.

Схема ионофона (плазменного динамика) была создана на основе широко распространенных проектов такого типа, найденных в интернете. Весь проект был создан в домашней мастерской из общедоступных материалов и с использованием приобретенного любительского опыта в электронике. Последующие исследования и описания свойств плазмы возникли при наблюдении различных явлений с плазмой, например, магнитного поля и испытаний с воздействием плазмы на свечу или лампу. Для эксперимента, описывающего четвертое агрегатное состояние (плазму), были также применены приборы и физические эксперименты, связанные с высоким напряжением и плазмой.

Внимание! Во время эксперимента используется устройство генерирующее высоковольтное напряжение и токсичный озон, которые могут представлять угрозу для жизни или здоровья! При проведении опытов будьте особо осторожны.

Перед проведением эксперимента нужно иметь базовые знания о плазме и связанных с ней физических явлениях. Они помогут лучше понять суть происходящего. Во время эксперимента будет важна следующая информация:

– Холодная плазма – сильно ионизированный газ (проводящий электричество), который по своим особым свойствам называется четвертным агрегатным состоянием вещества. Это газовое облако, электрически нейтральное, с высокой концентрацией электронов и ионов. Происходит при относительно низких температурах и давлениях.

– Электрический разряд – ток в изоляторе, вызванный сильным высоки напряжением.

– Электрическая дуга – непрерывный электрический разряд при нормальных условиях.

– Флуоресценция – явления света, излучаемого возбужденным (главным образом лёгким) атомом или молекулой.

Для проведения плазменного эксперимента понадобятся:

1) Система плазменной акустики с электродами для источника плазмы.

2) Регулируемый источник питания, обеспечивающий питание вышеуказанной системы (трансформатор с соответствующими параметрами – около 20В/5А).

3) Источник электрического звукового сигнала (например, мобильный телефон, МР3-плеер или выход для наушников с компьютера).

4) Свеча, магнит, спираль энергосберегающейлюминесцентнойлампы, лестница Иакова из проводов.

Далее выходной сигнал интегральной микросхемы подается на выход силового полевого МОП – транзистора управления, который преобразует его в соответствующие параметры высоковольтного импульса тока, протекающего через первичную обмотку трансформатора. В результате повышения и на выходе умножителя формируется гораздо более высокое напряжение, что вызывает ионизацию диэлектрика, который является воздухом с проходящим через него током, что приводит к устойчивой электрической дуге, то есть плазме.

Плазменный динамик.

После подключения источника электрического звукового сигнала (к смартфону) и правильного регулирования настроек акустической системы, чтобы получить стабильное пламя и хорошее качество звука, можно включить мелодию. Выбранная песня слышна непосредственно из электрической дуги! Разнообразные звуки играют в плазме между электродами!

Конечно, это не громкий динамик большой мощности, потому что музыка, выходящая из пламени, имеет громкость сравнимую с той, что воспроизводится со слабенького мобильного телефона. Кроме того, играемая музыка не имеет басов, ей не хватает низких частот. Это связано с тем, что мембрана в данном случае представляет собой небольшое плазменное пламя и не способна воспроизводить звуки, требующие больших движений диафрагмы (перемещение большого количества воздуха). Плазменный громкоговоритель воспроизводит прекрасно высокие тона, потому что он характеризуется низкой инерцией мембраны: пламя легко передает быстрые вибрации в воздух.

Плазма производит звук, благодаря своей модуляции. Генератор шим, в зависимости от входного электрического аудиосигнала, сокращает или удлиняет параметры выходного сигнала на постоянный частоте и, следовательно, называет концентрацию или истончение плазмы, что приводит к уплотнению и разбавлению воздуха.Таким образом, создается акустическая волна, которая по определению представляет собой структуру плотности и давления в упругой среде (воздухе). Эта волна, достигая наших ушей и позволяет слышать музыку, воспроизводимую с телефона.

Плазма и огонь.

Продолжая опыты, не отключая мобильный телефон или не меняя параметры электрической дуги, поместим свечу в плазму. Она быстро загорается и сгорает. Остается лишь короткая электрическая дуга, которая подает напряжение от электродов к пламени. Пламя свечи кажется ярче. Музыка продолжает воспроизводиться, на этот раз главным образом через пламя свечи.

Мгновенное зажигание фитиля свечки происходит потому, что плазма имеет очень высокую температуру – порядка несколько тысяч градусов Цельсия. Осветление пламени вызвано дополнительным нагревом атомов углерода за счет очень высокой температуры плазмы. Из этого можно сделать вывод, что нормальное пламя горения имеет свойства подобные плазме, и то, что оно проводит электричество. Оно также может быть модулировано, что позволяет воспроизводить звук.

Огонь имеет много общих черт с плазмой и подвержен тем же явлениям, однако, мы не может окончательно рассматривать его как плазму, потому что он слишком холодный. (это спорный вопрос – разные физики занимают различные позиции).

Взаимодействие плазмы с магнитом.

Чтобы изучить другое свойство плазмы, нужна стабильная электрическая дуга: для этого выключаем стабильный звуковой сигнал из генератора. Затем, прихватив ферритовый магнит плоскогубцами, медленно приближаем его к пламени плазмы и наблюдаем реакцию плазмы на наличие магнитного поля различной полярности. Каждый раз, независимо от полюса, который приближаем к электрической дуге, оно пригибается к магниту, чтобы быть как можно ближе к магнитному полю. Это говорит о том, что плазма состоит из частиц, восприимчивым к магнитным взаимодействиям, и в тоже время проводящим электричество. Из этого можно сделать вывод, что плазма представляет собой облако, состоящее из электронов и ионов. Эти заряды, генерирующие собственное электромагнитное поле, притягиваются магнитным полем и изгибают пламя вдоль линии его поля.

Плазма и ионизация газа в лампе.

Наблюдая плазменное пламя мы видим, чтооно излучает фиолетовый свет и генерирует много тепла – электрические разрядники горят. Чтобы узнать об ионизации других газов с помощью высокого напряжения, к электродам плазменного динамика присоединяем спираль из флуоресцентной лампочки.

Когда электрическая дуга соединяется с концами спирали, видно белый свет с теплым или более холодным спектром, идентичным нормальному функционированию лампы.

Ионизация газа в люминесцентной лампе убеждает в том, что разные газы могут излучать разный свет. Это позволяет сделать вывод о том, что плазма, возникающая в разных условиях, может иметь другие свойства, среди прочего, цвета испускаемого света, температуры или области возникновения.

Плазма и лестница Иакова.

Во время работы плазменного динамика видно, что электрическая дуга согнута. Чтобы узнать о следующем свойстве плазмы, нужно соединить два провода, образованные вместе в форме V (буква Виктория), но разделенные на несколько миллиметров друг от друга. Затем задайте правильные параметры дуги без воспроизведения музыки. После правильной активации новых электродов на их концах появляется небольшая дуга, которая быстро перемещается вверх и увеличивается по длине, а затем ломается. Ситуация повторяется много раз.

Анализируя это явление заключаем, что плазма подвергается явлению конвекции, то есть перемещает теплые массы воздуха, вызванные разницей плотности. Плазма по прежнему ведет себя как газ и обладает другими свойствами одновременно. Она может проводить электричество и содержит много энергии, которую дает окружающей среде по-разному. Все наблюдения подтверждают, что плазма представляет собой сильно ионизированный газ.

После длительной работы ионофона можно почувствовать запах воздуха, как после грозы. Это характерная особенность озона, создаваемая электрической дугой. Плазма, в зависимости от окружающей среды, в которой она присутствует, может вызывать различные химические реакции.

В аэробной среде она выполняет синтез кислорода в озон, в соответствии с уравнением 302>203. Это позволяет узнать про ещё одно необычное свойство четвёртого агрегатного состояния. Озон является ядовитым газом и обладает сильными асептическими и токсическими свойствами. Поэтому будьте осторожны во время эксперимента и проводите их в хорошо проветриваемом помещении. Вся эта заметка в журнале сопровождается несколькими фотографиями, накоторых автор запечатлел практическое исполнение своих экспериментов.

Данный текст, я отразил в ознакомительных целях, чтобы те люди, кто не знают, знали о том, что плазма проводит звук, может испускать различный свет, взаимодействует с магнитными линиями и прочее.

Для того человека, у которого знания физики электричества и знания ядерной физики получены в высших учебных заведениях, и для которых этот текст-«так, ни о чём»,я хочу всего лишь указать на то, что описание свойств плазмы в её характеристиках, это лишь отчасти является физикой, но и одновременно это же является энергией праной в каналах нади (индуизм), или праной является энергия содержащаяся в ионах или электронах плазмы, а под каналами нади подразумеваются магнитные силовые линии.

Для тех людей, у кого знания физики электричества и ядерной физике в совершенстве, могут применить эти знания на понимание потоков ионов калия и натрия в физиологии возбудимых тканей тела, в понимании деполяризации мембран клеток. Скрытый параметр «натрий-калиевый насос», имеет роль точно такого же механизма, как и источник плазмы для магнитных полей в теле человека, но при этом, весь этот «конструктор» имеет нематериальные (невещественные) параметры.

Отдельного разговора заслуживает и сердце человека, которое по сведениям индуизма, также является источником каналов нади, что автоматически подразумевает в себе также электромагнитную составляющую нематериального характера, с преобразованием энергии и генератором энергии, в том случае, если знания индуизма достоверны.

Пока я не затрагиваю сердце и не затрачиваю электромагнитный нематериальный каркас как сердца, так и его «соединений» с остальными частями электромагнитного каркаса человека, включая и нематериальное абсолютно черное тело.

Также я приведу сейчас и другой отрывок текста из книги «Энергия будущего». Этот отрывок дает вектор включения в суть понимая – гравитации. Однако в самом тексте ученые «обошли» принцип гравитации, даже не попытавшись проникнуть в суть условий гравитации, и далее в книге я описывал, что Бог-творец Брахма (индуизм) в теле человека, левитировал оторвавшись от Земли в позе лотоса. По есть, я обращаю внимание и на левитацию тела человека, и на гравитацию в физике, в ее взаимосвязи с плазмой. Итак, текст из книги «Энергия будущего»:

«Как мы увидим дальше, нагреть плазму до такой высокой температуры очень сложно. Поэтому возникает вопрос, а нужно ли стараться так ее поднимать? Веди и при меньшей температуре энергия все равно будет выделяться!

Стараться, к сожалению, нужно. И вот почему: мы хотим получить такой источник энергии, в котором происходило бы самоподдерживающаяся реакция синтеза. Другими словами, нам нужно создать установку, в которой энергия, затраченная на создание плазмы с высокой температурой, то есть на получение термоядерной реакции была бы существенно меньше выделяющейся. Картина здесь подобна зажиганию костра. Мы знаем, что получим от него тепловой энергии больше, нежели от зажженной спички, сыгравшей свою роль поджигателя.

По мере повышения температуры плазмы потери тепла, то есть потери энергии, увеличиваются. Происходят они в виде тормозного рентгеновского излучения, возникающего при взаимодействии электрона с электрическим полями ионов. При наличие в плазме магнитных полей возникает еще так называемое синхротронное (циклотронное) излучение, обусловленное центростремительным ускорением частиц, вращающихся в магнитном поле.

Итак, по мере увеличения температуры величина энергии, выделяющейся при синтезе в единицу времени, возрастает. Но с ростом температуры увеличиваются и потери тепла из плазмы. Казалось бы, это плохо. Однако в рассматриваемой области температур (50-150 миллионов градусов) выделение энергии с повышением температуры растет быстрее потерь. А это означает, что существует какая-то температура, при которой величина выделяемой энергии сравняется с ее потерями. Она будет для данного процесса минимальной, или, как аттестуют ее физики, критической. Для реакции дейтерия с литием она равна примерно 40 миллионам градусов. На самом же деле необходимая температура должна быть более высокой. Ведь если теплящий костер может быстро погаснуть из-за потерь тепла, вызванных ветром или дождем. А если он хорошо разгорается, температура его высока и пламя пышет, то он будет гореть даже в непогоду, то есть при больших потерях энергии.

Что нужно еще предпринять, чтобы осуществить в плазме самоподдерживающуюся реакцию синтеза?

Мы пока почти ничего не говорили о ее плотности. Для примера была взята величина атомов в кубическом сантиметре, что приблизительно соответствует одной десятитысячной плотности земной атмосферы, то есть практически – это вакуум. Если ее еще понизить, то скорость выделения энергии – мощность – окажется слишком малой, чтобы представлять практический интерес. Ну, а если повысить, приравнять, например, к плотности воздуха при атмосферном давлении? Тут мы столкнемся с другой неприятностью: по мере роста температуры такой плазмы начнется стремительный рост давления, которое достигнет сотен тысяч атмосер. Никакие стенки сосудов не смогут удержать такой напор! Вот почему в различных проектах термоядерных установок плотность плазмы выбирают в диапазоне частиц в кубическом сантиметре.

Как это часто бывает, решение одной проблемы вызывает другую, которую также нужно решать. При таких низких плотностях в плазме, несмотря на очень высокие температуры, при которых естественны большие скорости движения, ядра элементов проходя громадный путь (до ста тысяч километров) прежде, чем вступают в реакцию синтеза. (Конечно, соударяться между собой они будут гораздо чаще, однако эти соударения будут упругими, что не приводит к синтезу.) Но если ядра совершают такой большой путь, значит, они будут налетать и на стенки сосуда и, отражаясь от них, терять энергию. Этого как раз и нельзя допускать.

На страницу:
2 из 7