bannerbanner
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
63 из 80

2591

Chen X, Jiao J, Zhuang P, et al. Current intake levels of potatoes and all-cause mortality in China: a population-based nationwide study. Nutrition. 2021;81:110902. https://pubmed.ncbi.nlm.nih.gov/32739659/

2592

Center for Science in the Public Interest. 10 Best Foods. https://cspinet.org/eating-healthy/what-eat/10-best-foods. Accessed January 5, 2022.; https://cspinet.org/eating-healthy/what-eat/10-best-foods

2593

Wilson CD, Pace RD, Bromfield E, Jones G, Lu JY. Consumer acceptance of vegetarian sweet potato products intended for space missions. Life Support Biosph Sci. 1998;5(3):339–46. https://pubmed.ncbi.nlm.nih.gov/11876201/

2594

Drewnowski A. New metrics of affordable nutrition: which vegetables provide most nutrients for least cost? J Acad Nutr Diet. 2013;113(9):1182–7. https://pubmed.ncbi.nlm.nih.gov/23714199/

2595

Sunthonkun P, Palajai R, Somboon P, Suan CL, Ungsurangsri M, Soontorngun N. Life-span extension by pigmented rice bran in the model yeast Saccharomyces cerevisiae. Sci Rep. 2019;9(1):18061. https://pubmed.ncbi.nlm.nih.gov/31792269/

2596

Chen W, Müller D, Richling E, Wink M. Anthocyanin-rich purple wheat prolongs the life span of Caenorhabditis elegans probably by activating the DAF-16/FOXO transcription factor. J Agric Food Chem. 2013;61(12):3047–53. https://pubmed.ncbi.nlm.nih.gov/23470220/

2597

Zuo Y, Peng C, Liang Y, et al. Black rice extract extends the lifespan of fruit flies. Food Funct. 2012;3(12):1271–9. https://pubmed.ncbi.nlm.nih.gov/22930061/

2598

Lu X, Zhou Y, Wu T, Hao L. Ameliorative effect of black rice anthocyanin on senescent mice induced by D-galactose. Food Funct. 2014;5(11):2892–7. https://pubmed.ncbi.nlm.nih.gov/25190075/

2599

Kano M, Takayanagi T, Harada K, Makino K, Ishikawa F. Antioxidative activity of anthocyanins from purple sweet potato, Ipomoera batatas cultivar Ayamurasaki. Biosci Biotechnol Biochem. 2005;69(5):979–88. https://pubmed.ncbi.nlm.nih.gov/15914919/

2600

Majid M, Nasir B, Zahra SS, Khan MR, Mirza B, Haq I. Ipomoea batatas L. Lam. ameliorates acute and chronic inflammations by suppressing inflammatory mediators, a comprehensive exploration using in vitro and in vivo models. BMC Complement Altern Med. 2018;18(1):216. https://pubmed.ncbi.nlm.nih.gov/30005651/

2601

Wang YJ, Zheng YL, Lu J, et al. Purple sweet potato color suppresses lipopolysaccharide-induced acute inflammatory response in mouse brain. Neurochem Int. 2010;56(3):424–30. https://pubmed.ncbi.nlm.nih.gov/19941923/

2602

Wu DM, Lu J, Zheng YL, Zhou Z, Shan Q, Ma DF. Purple sweet potato color repairs D-galactose-induced spatial learning and memory impairment by regulating the expression of synaptic proteins. Neurobiol Learn Mem. 2008;90(1):19–27. https://pubmed.ncbi.nlm.nih.gov/18316211/

2603

Sun C, Diao Q, Lu J, et al. Purple sweet potato color attenuated NLRP3 inflammasome by inducing autophagy to delay endothelial senescence. J Cell Physiol. 2019;234(5):5926–39. https://pubmed.ncbi.nlm.nih.gov/30585631/

2604

Su W, Zhang C, Chen F, et al. Purple sweet potato color protects against hepatocyte apoptosis through Sirt1 activation in high-fat-diet-treated mice. Food Nutr Res. 2020;64:10.29219/fnr.v64.1509. https://pubmed.ncbi.nlm.nih.gov/32110174/

2605

Han Y, Guo Y, Cui SW, Li H, Shan Y, Wang H. Purple Sweet Potato Extract extends lifespan by activating autophagy pathway in male Drosophila melanogaster. Exp Gerontol. 2021;144:111190. https://pubmed.ncbi.nlm.nih.gov/33301922/

2606

Zhang X, Yang Y, Wu Z, Weng P. The modulatory effect of anthocyanins from purple sweet potato on human intestinal microbiota in vitro. J Agric Food Chem. 2016;64(12):2582–90. https://pubmed.ncbi.nlm.nih.gov/26975278/

2607

Suda I, Ishikawa F, Hatakeyama M, et al. Intake of purple sweet potato beverage affects on serum hepatic biomarker levels of healthy adult men with borderline hepatitis. Eur J Clin Nutr. 2008;62(1):60–7. https://pubmed.ncbi.nlm.nih.gov/17299464/

2608

Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009;28(sup4):500S-16S. https://pubmed.ncbi.nlm.nih.gov/20234038/

2609

Shi Z, Zhang T, Byles J, Martin S, Avery JC, Taylor AW. Food habits, lifestyle factors and mortality among oldest old Chinese: the Chinese Longitudinal Healthy Longevity Survey (CLHLS). Nutrients. 2015;7(9):7562–79. https://pubmed.ncbi.nlm.nih.gov/26371039/

2610

Mejia SB, Messina M, Li SS, et al. A meta-analysis of 46 studies identified by the FDA demonstrates that soy protein decreases circulating LDL and total cholesterol concentrations in adults. J Nutr. 2019;149(6):968–81. https://pubmed.ncbi.nlm.nih.gov/31006811/

2611

Mosallanezhad Z, Mahmoodi M, Ranjbar S, et al. Soy intake is associated with lowering blood pressure in adults: a systematic review and meta-analysis of randomized double-blind placebo-controlled trials. Complement Ther Med. 2021;59:102692. https://pubmed.ncbi.nlm.nih.gov/33636295/

2612

Bazzano LA, Thompson AM, Tees MT, Nguyen CH, Winham DM. Non-soy legume consumption lowers cholesterol levels: a meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2011;21(2):94–103. https://pubmed.ncbi.nlm.nih.gov/19939654/

2613

Mejia SB, Messina M, Li SS, et al. A meta-analysis of 46 studies identified by the FDA demonstrates that soy protein decreases circulating LDL and total cholesterol concentrations in adults. J Nutr. 2019;149(6):968–81. https://pubmed.ncbi.nlm.nih.gov/31006811/

2614

Tokede OA, Onabanjo TA, Yansane A, Gaziano JM, Djoussé L. Soya products and serum lipids: a meta-analysis of randomised controlled trials. Br J Nutr. 2015;114(6):831–43. https://pubmed.ncbi.nlm.nih.gov/21559039/

2615

Yan Z, Zhang X, Li C, Jiao S, Dong W. Association between consumption of soy and risk of cardiovascular disease: a meta-analysis of observational studies. Eur J Prev Cardiol. 2017;24(7):735–47. https://pubmed.ncbi.nlm.nih.gov/28067550/

2616

Nachvak SM, Moradi S, Anjom-Shoae J, et al. Soy, soy isoflavones, and protein intake in relation to mortality from all causes, cancers, and cardiovascular diseases: a systematic review and dose-response meta-analysis of prospective cohort studies. J Acad Nutr Diet. 2019;119(9):1483–1500.e17. https://pubmed.ncbi.nlm.nih.gov/31278047/

2617

D’elia L, Rossi G, Ippolito R, Cappuccio FP, Strazzullo P. Habitual salt intake and risk of gastric cancer: a meta-analysis of prospective studies. Clin Nutr. 2012;31(4):489–98. https://pubmed.ncbi.nlm.nih.gov/22296873/

2618

Kanda A, Hoshiyama Y, Kawaguchi T. Association of lifestyle parameters with the prevention of hypertension in elderly Japanese men and women: a four-year follow-up of normotensive subjects. Asia Pac J Public Health. 1999;11(2):77–81. https://pubmed.ncbi.nlm.nih.gov/11195162/

2619

Ito K. Review of the health benefits of habitual consumption of miso soup: focus on the effects on sympathetic nerve activity, blood pressure, and heart rate. Environ Health Prev Med. 2020;25(1):45. https://pubmed.ncbi.nlm.nih.gov/32867671/

2620

Kondo H, Tomari HS, Yamakawa S, et al. Long-term intake of miso soup decreases nighttime blood pressure in subjects with high-normal blood pressure or stage I hypertension. Hypertens Res. 2019;42(11):1757–67. https://pubmed.ncbi.nlm.nih.gov/31371810/

2621

Du DD, Yoshinaga M, Sonoda M, Kawakubo K, Uehara Y. Blood pressure reduction by Japanese traditional Miso is associated with increased diuresis and natriuresis through dopamine system in Dahl salt-sensitive rats. Clin Exp Hypertens. 2014;36(5):359–66. https://pubmed.ncbi.nlm.nih.gov/24047246/

2622

Willcox BJ, Willcox DC. Caloric restriction, caloric restriction mimetics, and healthy aging in Okinawa: controversies and clinical implications. Curr Opin Clin Nutr Metab Care. 2014;17(1):51–8. https://pubmed.ncbi.nlm.nih.gov/24316687/

2623

Iso H, Kubota Y. Nutrition and disease in the Japan Collaborative Cohort Study for evaluation of cancer (JACC). Asian Pac J Cancer Prev. 2007;8 Suppl:35–80. https://pubmed.ncbi.nlm.nih.gov/18260705/

2624

Lashmanova E, Proshkina E, Zhikrivetskaya S, et al. Fucoxanthin increases lifespan of Drosophila melanogaster and Caenorhabditis elegans. Pharmacol Res. 2015;100:228–41. https://pubmed.ncbi.nlm.nih.gov/26292053/

2625

Zhao T, Zhang Q, Qi H, Liu X, Li Z. Extension of life span and improvement of vitality of Drosophila melanogaster by long-term supplementation with different molecular weight polysaccharides from Porphyra haitanensis. Pharmacol Res. 2008;57(1):67–72. https://pubmed.ncbi.nlm.nih.gov/18221885/

2626

Wada K, Nakamura K, Tamai Y, et al. Seaweed intake and blood pressure levels in healthy pre-school Japanese children. Nutr J. 2011;10:83. https://pubmed.ncbi.nlm.nih.gov/21827710/

2627

Ono A, Shibaoka M, Yano J, Asai Y, Fujita T. Eating habits and intensity of medication in elderly hypertensive outpatients. Hypertens Res. 2000;23(3):195–200. https://pubmed.ncbi.nlm.nih.gov/10821126/

2628

Teas J, Baldeón ME, Chiriboga DE, Davis JR, Sarriés AJ, Braverman LE. Could dietary seaweed reverse the metabolic syndrome? Asia Pac J Clin Nutr. 2009;18(2):145–54. https://pubmed.ncbi.nlm.nih.gov/19713172/

2629

Ma W, He X, Braverman L. Iodine content in milk alternatives. Thyroid. 2016;26(9):1308–10. https://pubmed.ncbi.nlm.nih.gov/27358189/

2630

Flachowsky G, Franke K, Meyer U, Leiterer M, Schöne F. Influencing factors on iodine content of cow milk. Eur J Nutr. 2014;53(2):351–65. https://pubmed.ncbi.nlm.nih.gov/24185833/

2631

Teas J, Pino S, Critchley A, Braverman LE. Variability of iodine content in common commercially available edible seaweeds. Thyroid. 2004;14(10):836–41. https://pubmed.ncbi.nlm.nih.gov/15588380/

2632

Combet E. Iodine status, thyroid function, and vegetarianism. In: Vegetarian and Plant-Based Diets in Health and Disease Prevention. Elsevier; 2017:769–90. https://worldcat.org/title/988275855

2633

Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009;28 Suppl:500S-16S. https://pubmed.ncbi.nlm.nih.gov/20234038/

2634

Sánchez JE, Jiménez-Pérez G, Liedo P. Can consumption of antioxidant rich mushrooms extend longevity?: antioxidant activity of Pleurotus spp. and its effects on Mexican fruit flies’ (Anastrepha ludens) longevity. Age (Dordr). 2015;37(6):107. https://pubmed.ncbi.nlm.nih.gov/26499817/

2635

Beelman RB, Kalaras MD, Phillips AT, Richie JP. Is ergothioneine a ‘longevity vitamin’ limited in the American diet? J Nutr Sci. 2020;9:e52. https://pubmed.ncbi.nlm.nih.gov/33244403/

2636

Beelman RB, Kalaras MD, Phillips AT, Richie JP. Is ergothioneine a ‘longevity vitamin’ limited in the American diet? J Nutr Sci. 2020;9:e52. https://pubmed.ncbi.nlm.nih.gov/33244403/

2637

Ames BN. Prolonging healthy aging: longevity vitamins and proteins. Proc Natl Acad Sci U S A. 2018;115(43):10836–44. https://pubmed.ncbi.nlm.nih.gov/30322941/

2638

Smith E, Ottosson F, Hellstrand S, et al. Ergothioneine is associated with reduced mortality and decreased risk of cardiovascular disease. Heart. 2020;106(9):691–7. https://pubmed.ncbi.nlm.nih.gov/31672783/

2639

Paul BD, Snyder SH. The unusual amino acid L-ergothioneine is a physiologic cytoprotectant. Cell Death Differ. 2010;17(7):1134–40. https://pubmed.ncbi.nlm.nih.gov/19911007/

2640

Beelman RB, Kalaras MD, Phillips AT, Richie JP. Is ergothioneine a ‘longevity vitamin’ limited in the American diet? J Nutr Sci. 2020;9:e52. https://pubmed.ncbi.nlm.nih.gov/33244403/

2641

Beelman RB, Kalaras MD, Richie JP. Micronutrients and bioactive compounds in mushrooms: a recipe for healthy aging? Nutr Today. 2019;54(1):16–22. https://journals.lww.com/nutritiontodayonline/Abstract/2019/01000/Micronutrients_and_Bioactive_Compounds_in.5.aspx

2642

Ba DM, Gao X, Al-Shaar L, et al. Prospective study of dietary mushroom intake and risk of mortality: results from continuous National Health and Nutrition Examination Survey (NHANES) 2003–2014 and a meta-analysis. Nutr J. 2021;20(1):80. https://pubmed.ncbi.nlm.nih.gov/34548082/

2643

Cheah IK, Feng L, Tang RMY, Lim KHC, Halliwell B. Ergothioneine levels in an elderly population decrease with age and incidence of cognitive decline; a risk factor for neurodegeneration? Biochem Biophys Res Commun. 2016;478(1):162–7. https://pubmed.ncbi.nlm.nih.gov/27444382/

2644

Kameda M, Teruya T, Yanagida M, Kondoh H. Frailty markers comprise blood metabolites involved in antioxidation, cognition, and mobility. Proc Natl Acad Sci U S A. 2020;117(17):9483–9. https://pubmed.ncbi.nlm.nih.gov/32295884/

2645

Cheah IK, Feng L, Tang RMY, Lim KHC, Halliwell B. Ergothioneine levels in an elderly population decrease with age and incidence of cognitive decline; a risk factor for neurodegeneration? Biochem Biophys Res Commun. 2016;478(1):162–7. https://pubmed.ncbi.nlm.nih.gov/27444382/

2646

Lagrange E, Vernoux JP. Warning on false or true morels and button mushrooms with potential toxicity linked to hydrazinic toxins: an update. Toxins (Basel). 2020;12(8):482. https://pubmed.ncbi.nlm.nih.gov/32751277/

2647

Heer RS, Patel NB, Mandal AKJ, Lewis F, Missouris CG. Not a fungi to be with: shiitake mushroom flagellate dermatitis. Am J Emerg Med. 2020;38(2):412.e1–2. https://pubmed.ncbi.nlm.nih.gov/31864870/

2648

Stijve T, Pittet A. Absence of agaritine in Pleurotus species and in other cultivated and wild-growing mushrooms not belonging to the genus Agaricus. Dtsch Lebensm-Rundsch. 2000;96(7):251–4. https://www.researchgate.net/publication/286669322_Absence_of_Agaritine_in_Pleurotus_species_and_in_other_cultivated_and_wild-growing_mushrooms_not_belonging_to_the_genus_Agaricus

2649

Money NP. Are mushrooms medicinal? Fungal Biol. 2016;120(4):449–53. https://pubmed.ncbi.nlm.nih.gov/27020147/

2650

Money NP. Are mushrooms medicinal? Fungal Biol. 2016;120(4):449–53. https://pubmed.ncbi.nlm.nih.gov/27020147/

2651

Litten W. The most poisonous mushrooms. Sci Am. 1975;232(3):90–101. https://pubmed.ncbi.nlm.nih.gov/1114308/

2652

Lim CS, Chhabra N, Leikin S, Fischbein C, Mueller GM, Nelson ME. Atlas of select poisonous plants and mushrooms. Dis Mon. 2016;62(3):41–66. https://pubmed.ncbi.nlm.nih.gov/26965743/

2653

Грибы рода Amanita. В Европе это Amanita virosa, а в восточной и западной части Северной Америки – A. bisporigera и A. ocreata. В России известен как бледная поганка (Amanita phalloides). – Примеч. ред.

2654

Culliton BJ. The destroying angel: a story of a search for an antidote. Science. 1974;185(4151):600–1. https://pubmed.ncbi.nlm.nih.gov/17791229/

2655

Loyd AL, Richter BS, Jusino MA, et al. Identifying the “mushroom of immortality”: assessing the Ganoderma species composition in commercial reishi products. Front Microbiol. 2018;9:1557. https://pubmed.ncbi.nlm.nih.gov/30061872/

2656

Wang J, Cao B, Zhao H, Feng J. Emerging roles of Ganoderma lucidum in anti-aging. Aging Dis. 2017;8(6):691–707. https://pubmed.ncbi.nlm.nih.gov/29344411/

2657

Pan Y, Lin Z. Anti-aging effect of Ganoderma (Lingzhi) with health and fitness. Adv Exp Med Bio. 2019;1182:299–309. https://pubmed.ncbi.nlm.nih.gov/31777025/

2658

Cuong VT, Chen W, Shi J, et al. The anti-oxidation and anti-aging effects of Ganoderma lucidum in Caenorhabditis elegans. Exp Gerontol. 2019;117:99–105. https://pubmed.ncbi.nlm.nih.gov/28750751/

2659

Wang J, Cao B, Zhao H, Feng J. Emerging roles of Ganoderma lucidum in anti-aging. Aging Dis. 2017;8(6):691–707. https://pubmed.ncbi.nlm.nih.gov/29344411/

2660

Hsu KD, Cheng KC. From nutraceutical to clinical trial: frontiers in Ganoderma development. App Microbiol Biotechnol. 2018;102(21). https://pubmed.ncbi.nlm.nih.gov/30182215/

2661

Loyd AL, Richter BS, Jusino MA, et al. Identifying the “mushroom of immortality”: assessing the Ganoderma species composition in commercial reishi products. Front Microbiol. 2018;9:1557. https://pubmed.ncbi.nlm.nih.gov/30061872/

2662

Loyd AL, Richter BS, Jusino MA, et al. Identifying the “mushroom of immortality”: assessing the Ganoderma species composition in commercial reishi products. Front Microbiol. 2018;9:1557. https://pubmed.ncbi.nlm.nih.gov/30061872/

2663

Totelin L. When foods become remedies in ancient Greece: The curious case of garlic and other substances. J Ethnopharmacol. 2015;167:30–7. https://pubmed.ncbi.nlm.nih.gov/25173971/

2664

Shi X, Lv Y, Mao C, et al. Garlic consumption and all-cause mortality among Chinese oldest-old individuals: a population-based cohort study. Nutrients. 2019;11(7):E1504. https://pubmed.ncbi.nlm.nih.gov/31262080/

2665

Lau KK, Chan YH, Wong YK, et al. Garlic intake is an independent predictor of endothelial function in patients with ischemic stroke. J Nutr Health Aging. 2013;17(7):600–4. https://pubmed.ncbi.nlm.nih.gov/23933870/

2666

Mahdavi-Roshan M, Mirmiran P, Arjmand M, Nasrollahzadeh J. Effects of garlic on brachial endothelial function and capacity of plasma to mediate cholesterol efflux in patients with coronary artery disease. Anatol J Cardiol. 2017;18(2):116–21. https://pubmed.ncbi.nlm.nih.gov/28554988/

2667

Mahdavi-Roshan M, Zahedmehr A, Mohammad-Zadeh A, et al. Effect of garlic powder tablet on carotid intima-media thickness in patients with coronary artery disease: a preliminary randomized controlled trial. Nutr Health. 2013;22(2):143–55. https://pubmed.ncbi.nlm.nih.gov/25573347/

2668

Shabani E, Sayemiri K, Mohammadpour M. The effect of garlic on lipid profile and glucose parameters in diabetic patients: a systematic review and meta-analysis. Prim Care Diabetes. 2019;13(1):28–42. https://pubmed.ncbi.nlm.nih.gov/30049636/

2669

Xiong XJ, Wang PQ, Li SJ, Li XK, Zhang YQ, Wang J. Garlic for hypertension: a systematic review and meta-analysis of randomized controlled trials. Phytomedicine. 2015;22(3):352–61. https://pubmed.ncbi.nlm.nih.gov/25837272/

2670

Atkin M, Laight D, Cummings MH. The effects of garlic extract upon endothelial function, vascular inflammation, oxidative stress and insulin resistance in adults with type 2 diabetes at high cardiovascular risk. A pilot double blind randomized placebo controlled trial. J Diabetes Complications. 2016;30(4):723–7. https://pubmed.ncbi.nlm.nih.gov/26954484/

2671

Soleimani D, Paknahad Z, Askari G, Iraj B, Feizi A. Effect of garlic powder consumption on body composition in patients with nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled trial. Adv Biomed Res. 2016;5:2. https://pubmed.ncbi.nlm.nih.gov/26955623/

2672

Shabani E, Sayemiri K, Mohammadpour M. The effect of garlic on lipid profile and glucose parameters in diabetic patients: a systematic review and meta-analysis. Prim Care Diabetes. 2019;13(1):28–42. https://pubmed.ncbi.nlm.nih.gov/30049636/

2673

Rajan TV, Hein M, Porte P, Wikel S. A double-blinded, placebo-controlled trial of garlic as a mosquito repellant: a preliminary study. Med Vet Entomol. 2005;19(1):84–9. https://pubmed.ncbi.nlm.nih.gov/15752181/

2674

Stjernberg L, Berglund J. Garlic as an insect repellent. JAMA. 2000;284(7):831. https://pubmed.ncbi.nlm.nih.gov/10938169/

2675

Tunón H. Garlic as a tick repellent. JAMA. 2001;285(1):41–2. https://pubmed.ncbi.nlm.nih.gov/11150101/

2676

Yusof YAM. Gingerol and its role in chronic diseases. Adv Exp Med Biol. 2016;929:177–207. https://pubmed.ncbi.nlm.nih.gov/27771925/

2677

Liu J, Shi JZ, Yu LM, Goyer RA, Waalkes MP. Mercury in traditional medicines: is cinnabar toxicologically similar to common mercurials? Exp Biol Med (Maywood). 2008;233(7):810–7. https://pubmed.ncbi.nlm.nih.gov/18445765/

2678

Anh NH, Kim SJ, Long NP, et al. Ginger on human health: a comprehensive systematic review of 109 randomized controlled trials. Nutrients. 2020;12(1):E157. https://pubmed.ncbi.nlm.nih.gov/31935866/

2679

Bodagh MN, Maleki I, Hekmatdoost A. Ginger in gastrointestinal disorders: a systematic review of clinical trials. Food Sci Nutr. 2018;7(1):96–108. https://pubmed.ncbi.nlm.nih.gov/30680163/

2680

Mowrey DB, Clayson DE. Motion sickness, ginger, and psychophysics. Lancet. 1982;1(8273):655–7. https://pubmed.ncbi.nlm.nih.gov/30680163/

2681

Palatty PL, Haniadka R, Valder B, Arora R, Baliga MS. Ginger in the prevention of nausea and vomiting: a review. Crit Rev Food Sci Nutr. 2013;53(7):659–69. https://pubmed.ncbi.nlm.nih.gov/23638927/

2682

Adib-Hajbaghery M, Hosseini FS. Investigating the effects of inhaling ginger essence on post-nephrectomy nausea and vomiting. Complement Ther Med. 2015;23(6):827–31. https://pubmed.ncbi.nlm.nih.gov/26645524/

2683

Bartels EM, Folmer VN, Bliddal H, et al. Efficacy and safety of ginger in osteoarthritis patients: a meta-analysis of randomized placebo-controlled trials. Osteoarthritis Cartilage. 2015;23(1):13–21. https://pubmed.ncbi.nlm.nih.gov/25300574/

2684

Khayat S, Kheirkhah M, Behboodi Moghadam Z, Fanaei H, Kasaeian A, Javadimehr M. Effect of treatment with ginger on the severity of premenstrual syndrome symptoms. ISRN Obstet Gynecol. 2014;2014:792708. https://pubmed.ncbi.nlm.nih.gov/24944825/

2685

Ozgoli G, Goli M, Moattar F. Comparison of effects of ginger, mefenamic acid, and ibuprofen on pain in women with primary dysmenorrhea. J Altern Complement Med. 2009;15(2):129–32. https://pubmed.ncbi.nlm.nih.gov/19216660/

На страницу:
63 из 80