bannerbanner
Финансовая диагностика предприятия. Монография
Финансовая диагностика предприятия. Монография

Полная версия

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
5 из 7

По виду прогнозной модели, в свою очередь, следует различать:

1) эмпирические модели, основанные на системе показателей, но не предполагающие построение обобщающего (интегрального) показателя (по выражению Э. Альтмана, такие модели, как правило, строятся методами «традиционного коэффициентного анализа»166);

2) модели, позволяющие оценить вероятность банкротства по значению обобщающего показателя.

Наиболее популярные эмпирические модели диагностики банкротства представлены интегральными кредит-скоринговыми моделями (Z-score models), построенными по данным финансовой отчетности преимущественно методом множественного дискриминантного анализа (Multiple Discriminant Analysis, MDA). В качестве примеров можно привести как широко известные модели Э. Альтмана167, Р. Таффлера168, так и не столь известные169.

Понятие структурных методов диагностики финансовой несостоятельности в литературе трактуется неоднозначно. Речь в данном случае идет прежде всего о моделях КМВ-Мертона (KMV – Merton Models). Данные модели, позволяющие с высокой точностью оценить вероятность банкротства, имели не только коммерческий успех, но и существенный научный резонанс170. Вероятно, поэтому структурными, как правило, называют только те модели, которые основаны на концепции оценки корпоративных обязательств Блэка – Шоулза – Мертона (BSM model)171. Подобную точку зрения можно встретить как в западной, так и в отечественной литературе172.

Структурные методы в широком смысле противопоставляются эмпирическим и, следовательно, предполагают теоретическое обоснование, а именно представление о банкротстве фирмы в контексте ее финансовой модели («финансовой структуры»)173.

Отметим, что в последние годы рыночные структурные модели (преимущественно на примере моделей КМВ – Мертона) часто противопоставляются нерыночным эмпирическим (как правило, на примере мультипликативных дискриминантных моделей)174. Однако, как следует из сказанного, ставить знака равенства между рыночными и структурными методами, как и между нерыночными и эмпирическими методами, не вполне корректно. Эмпирические модели могут быть основаны на рыночных оценках, а структурные модели разрабатываются и в отношении непубличных компаний, об оценке рыночной стоимости которых можно говорить с определенной долей условности. Кроме того, как отмечалось выше, многие модели диагностики финансовой несостоятельности носят смешанный характер. В то же время структурные модели КМВ – Мертона корректируются с учетом статистических данных.

Очевидно, что классификацию методов и моделей диагностики финансовой несостоятельности при желании можно продолжить. Так, по количеству используемых показателей прогнозные модели могут быть однофакторными и многофакторными; в зависимости от вида используемых показателей – формализованными и неформализованными; по используемым математическим методам – статистическими (МДА, логит-модели) и на основе искусственного интеллекта (нейронные модели, деревья решений); в зависимости от возможности применения экспертных оценок – субъективными и смешанными и т. д.175

Финансовые методы диагностики финансовой несостоятельности (банкротства)

Прогнозирование корпоративного банкротства, как правило, проводится финансовыми методами. При этом предпочтение отдается статистическим моделям. Далее мы проанализируем особенности практического применения и проблемы адаптации следующих наиболее популярных моделей:

– основанных на системе финансовых показателей, не предполагающих построение обобщающего показателя вероятности банкротства (метод традиционного коэффициентного анализа);

– предполагающих формирование обобщающего показателя вероятности банкротства (в частности, построенные с применением метода мультипликативного дискриминантного анализа).

Отдельное внимание мы уделим и менее популярным в России структурным моделям прогнозирования финансовых затруднений на примере моделей КМВ – Мертона, которые, как было отмечено ранее, основываются на так называемых рыночных показателях.

Если для диагностики банкротства используются статистические методы176, не предполагающие построение обобщающего показателя, порядок действий при обосновании соответствующей прогнозной модели состоит в следующем:

1. Строится система показателей (как правило, финансовых коэффициентов), наиболее явно отражающих признаки финансовой несостоятельности.

2. Устанавливаются критические значения данных показателей.

3. Решение о вероятности банкротства принимается на основе сравнения фактических значений показателей по анализируемому предприятию с их критическими значениями.

Считается, что первая статистически обоснованная система финансовых показателей для оценки вероятности корпоративного банкротства была построена в 1966 г. У. Бивером, доказавшим, что некоторые финансовые коэффициенты кризисных предприятий задолго до признания несостоятельности значительно отличаются от соответствующих коэффициентов финансово устойчивых предприятий.

Выборка состояла из 79 пар предприятий, половина которых в период с 1954 по 1964 г. потерпела крах (предприятия, которые обанкротились, не смогли выплатить дивиденды по привилегированным акциям, объявили дефолт по облигациям или превысили кредитный лимит по банковскому счету177). Максимальный анализируемый период составлял пять лет178. Динамический анализ проводился по шести финансовым коэффициентам, наиболее точно отражающим признаки финансовой несостоятельности:

– коэффициент достаточности денежного потока – отношение денежного потока к совокупному долгу179;

– коэффициент рентабельности активов – отношение чистой прибыли к активам;

– уровень финансового левериджа – доля совокупного долга в общем объеме обязательств;

– коэффициент покрытия активов собственными оборотными средствами – отношение собственных оборотных средств к активам180;

– коэффициент текущей ликвидности;

– период обращения собственных оборотных средств («no-credit interval») – отношение собственных оборотных средств181 к операционным расходам без учета амортизации.

Несмотря на очевидные преимущества подобных моделей (возможность применять экспертные оценки, оценивать вероятность банкротства по общедоступной финансовой информации, простота обоснования и практического применения), они обладают и некоторыми существенными ограничениями:

– во-первых, (это ограничение, прежде всего, касается возможности адаптации иностранных моделей к российским условиям) система показателей, как правило, строится на основе статистических данных. Если анализ проводится в другой стране, по другой отрасли, через продолжительный период времени, несостоятельными могут оказаться не только критические значения показателей, но и сами значимые показатели;

– во-вторых, показатели невозможно однозначно нормировать: в каждом конкретном случае должна учитываться специфика деятельности, временной период, внешние факторы и т. д. Поэтому, как правило, можно сделать только общие выводы о динамике финансового состояния фирмы (ухудшилось или улучшилось);

– в-третьих, значения показателей могут приводить к противоречивым выводам, и у аналитика закономерно возникает потребность «свернуть» несколько показателей в один обобщающий, по значению которого можно с определенной долей условности однозначно судить о вероятности финансовой несостоятельности.

Пожалуй, наиболее популярным методом диагностики финансовой несостоятельности, предполагающим построение такого обобщающего показателя вероятности банкротства, является множественный (или мультипликативный) дискриминантный анализ (Multiple Discriminant Analysis, MDA). Изначально метод нашел применение в исследованиях по естественным наукам в 1930-е гг. Впервые для прогнозирования банкротства предприятий мультипликативный дискриминантный анализ был предложен Эдвардом Альтманом в 1968 г.

Суть метода заключается в следующем:

1) составляется выборка схожих по характеристикам предприятий, которые либо обанкротились, либо сумели выжить в течение некоторого периода;

2) выбираются наиболее значимые для оценки вероятности банкротства финансовые коэффициенты;

3) строится дискриминантная функция, графически делящая предприятия выборки на две группы: финансово устойчивые и потенциальные банкроты:

Z = а1*К1+а2*К2 +… +аn*Кn,

где Z – обобщающий (интегральный) показатель вероятности банкротства;

а1 – n – некоторые параметры (коэффициенты регрессии);

K1 – n – наиболее значимые для целей диагностики банкротства показатели (как правило, финансовые коэффициенты).

Коэффициенты регрессии рассчитываются в результате статистической обработки данных по выборке предприятий;

4) также по итогам обработки эмпирических данных устанавливаются пороговые нормативы функции Z1 и Z2 (где Z1

В случае, если рост значений факторов означает повышение финансовой устойчивости, при Z>Z2 вероятность банкротства незначительна; при Z

И напротив, если между значениями факторов и уровнем финансовой устойчивости наблюдается обратная зависимость, при Z>Z2 вероятность банкротства велика; при Z

5) оценка вероятности банкротства проводится исходя из сравнения значения функции анализируемого предприятия и установленных критических значений.

Подробная характеристика применения метода мультипликативного дискриминантного анализа в целях диагностики финансовой несостоятельности приводится в монографии Ю. Бригхема и Л. Гапенски182. В частности, на основе данных по 19 компаниям, часть из которых обанкротилась, показан порядок формирования двухфакторной модели прогнозирования банкротства. В качестве базовых показателей используются коэффициент текущей ликвидности и коэффициент финансовой зависимости (доля заемных средств в пассивах):

Z = – 0,3877 – 1,0736*CR + 0,0579*DR,

где Z – показатель вероятности банкротства;

CR – коэффициент текущей ликвидности;

DR – коэффициент финансовой зависимости.

– При Z1 < – 0,3 банкротство маловероятно; при Z1 > 0,3 вероятность наступления банкротства оценивается как высокая; при Z1=0 указанная вероятность равна 50 %. В интервале [–0,3; 0,3] находится «зона неопределенности».

Как правило, модели, построенные методом дискриминантного анализа, включают более двух факторов. В частности, наиболее известная модель Э. Альтмана (модель «Z») – пятифакторная183:

Z = 0,012*X1 + 0,014*X2 + 0,033*X3 + 0,006*X4 + 0,999X5,

где Z – показатель вероятности банкротства;

X1 – доля собственных оборотных средств в активах (отметим, что речь идет о традиционной трактовке собственных оборотных средств, рассчитываемых как разность оборотных активов и краткосрочных обязательств);

X2 – отношение реинвестированной прибыли к активам, то есть рентабельность активов;

X3 – отношение операционной прибыли к активам (еще один показатель рентабельности активов);

X4 – отношение рыночной капитализации к учетной стоимости долговых обязательств – показатель финансового левериджа (таким образом, модель можно было применять только в отношении публичных компаний);

X5 – отношение выручки к активам (оборачиваемость активов).

В зависимости от значения Z формируется оценка вероятности банкротства. При Z < 1,8 вероятность банкротства высока; при Z > 2,99 – очень низка. Зона неопределенности, когда нельзя с приемлемой точностью оценить наступление того или иного события, находится в интервале [1,81; 2,99]. При Z = 2,675 вероятность наступления банкротства составляет 50 %. Данная модель позволяла спрогнозировать банкротство за один год с точностью 95 %; за два года – до 70 %; за три – до 50 %.

Метод множественного дискриминантного анализа получил широкое практическое применение. Новые модели отвечали страновым, отраслевым и другим особенностям финансово-экономической деятельности предприятий. Так, в 1983 г. Э. Альтманом была опубликована модель «Z’», в которой финансовый леверидж оценивался по данным финансовой отчетности, что позволяло использовать ее не только в отношении публичных компаний184:

Z’ = 0,717*К1 + 0,847*К2 + 3,107*К3 + 0,420*К4 +0,998*К5,

где Z’ – показатель вероятности банкротства;

К1 – доля собственных оборотных средств в активах;

К2 – отношение накопленной реинвестированной прибыли к активам;

К3 – отношение операционной прибыли к активам;

К4 – отношение собственного капитала и заемного капитала (в учетной оценке);

К5 – отношение выручки от реализации к активам.

Также метод МДА был адаптирован для прогнозирования банкротства малых и средних предприятий. В качестве примера можно привести четырехфакторную модель Г. Спрингейта (1978 г.), разработанную по данным финансовой отчетности малых и средних канадских предприятий185:

Z = 1,03 *K1 + 3,07*K2 + 0,66*K3 + 0,4*K4,

где Z – показатель вероятности банкротства;

K1 – отношение оборотных активов к итогу баланса;

K2 – отношение суммы прибыли до налогообложения и процентов к уплате к итогу баланса;

K3 – отношение прибыли до налогообложения к величине краткосрочных обязательств;

K4 – отношение выручки (нетто) от реализации к итогу баланса.

При Z < 0,862 предприятие получало оценку «крах».

Данная модель обеспечивала точность годового прогноза 92,5 %.

Метод множественного дискриминантного анализа обладает существенными преимуществами (высокая точность, незначительная зависимость результатов анализа от субъективного фактора, возможность прогнозирования банкротства по общедоступным сведениям, простота применения и интерпретации полученных результатов), что обусловило его высокую популярность. Наиболее известные дискриминантные модели за год до краха обеспечивают достоверный результат с вероятностью от 83 до 98 %186.

Основные ограничения в применении данного метода заключаются в следующем.

Соответствующие модели строятся статистическими методами по определенной выборке компаний. Распределение финансовых показателей деятельности компаний не является постоянным: оно меняется со временем в зависимости от региональных и отраслевых условий деятельности. Если анализируемая компания находится в другой стране, имеет другую отраслевую специфику или, например, не является публичной в отличие от компаний, формирующих выборку, использовать соответствующую модель нецелесообразно. В частности, вопреки распространенному мнению, некорректно применение «импортных» дискриминантных моделей в отношении российских компаний187. Очевидно, невозможно и внесение «механических» корректировок в пороговые нормативы, финансовые коэффициенты или коэффициенты регрессии существующих моделей.

Формирование эффективной модели диагностики банкротства методом МДА требует репрезентативной выборки. Исследования Moody’s показатели, что такая выборка должна состоять как минимум из 40 пар предприятий (для сравнения: первая модель Альтмана основана на исследовании всего 33 пар)188. В то же время, как отмечалось ранее, корпоративное банкротство является относительно редким событием, что затрудняет задачу разработчиков.

Применение мультипликативного дискриминантного анализа целесообразно в условиях относительной стабильности внешней среды или умеренной неопределенности, когда вероятность результатов принятия управленческого решения можно оценить с приемлемой точностью.

Результаты оценки могут оказаться в «зоне неопределенности», когда вероятность банкротства анализируемого предприятия составляет примерно 50 %. Следует отметить, что последнее ограничение успешно преодолевается с помощью других статистических методов. Так, в 1980 г. Джеймс Олсон обосновал первую логит-модель диагностики банкротства189. Подобные модели позволяют получить значение вероятности банкротства по формуле логистической регрессии, и так называемая серая зона в данном случае отсутствует.

Далее мы обратимся к рыночным моделям, а именно к структурным моделям прогнозирования финансовых затруднений на примере моделей КМВ – Мертона.

Согласно концепции Блэка – Шоулза – Мертона, собственный капитал фирмы рассматривается как колл-опцион на ее активы с ценой исполнения, соответствующей величине долговых обязательств, а банкротство – как «отказ» акционеров (держателей опциона) от покупки активов у кредиторов (срок такого опциона соответствует сроку обязательств).

Логика рассуждений такова. В случае ликвидации компании кредиторы имеют преимущественное (по отношению к собственникам) право получения части ее имущества пропорционально своим финансовым требованиям. Собственники получат причитающуюся им часть имущества только в том случае, если требования кредиторов будут полностью удовлетворены. Таким образом, при ликвидации компании собственники получат величину (E, Equity – собственный капитал):

E = max [A – D, 0],

где A (Assets) – активы;

D (Duties) – обязательства.

Данная формула соответствует характеристике колл-опциона европейского типа на покупку активов фирмы (с ценой исполнения на уровне долговых обязательств), «купить» которые выгодно только в том случае, если стоимость активов фирмы в момент погашения долга превышает величину долговых обязательств.

Заемные средства, в свою очередь, можно представить как пут-опцион на продажу активов фирмы в случае ее ликвидации по цене:

D = min [A, D].

Банкротство фирмы означает такое финансовое состояние, при котором стоимость ее активов становится меньше величины долговых обязательств или, другими словами, величина чистых активов становится отрицательной. Таким образом, расстояние до банкротства действующей компании (distance to default, DD) можно оценить, используя показатель чистых активов.

Учитывая, что стоимость активов фирмы имеет вероятностное распределение, характеризующееся ожидаемой стоимостью и стандартным отклонением, расстояние до банкротства можно выразить количеством стандартных отклонений (σ) по формуле:

Как видно из формулы, чем ниже стоимость активов и чем выше ее волатильность, тем выше вероятность банкротства.

Оценка вероятности банкротства действующей компании, таким образом, предполагает три последовательных этапа:

1) оценка рыночной стоимости активов и ее волатильности;

2) оценка расстояния до банкротства;

3) оценка вероятности банкротства.

Стоимость активов и ее волатильность неочевидны, но их оценка может быть получена на основе данных о рыночной капитализации и волатильности акций компании с применением теории ценообразования опционов Блэка – Шоулза. Вероятность банкротства в оригинальной модели Блэка – Шоулза – Мертона оценивается на основе допущения о нормальном распределении стоимости активов.

Эмпирические исследования корпорации KMV показали, что некоторые фирмы продолжают свое существование, несмотря на отрицательные чистые активы. Поэтому в моделях КМВ – Мертона, сформированных с учетом статистических данных, «расстояние до банкротства» оценивается по формуле:

где LTD (Long-termed duties) – долгосрочные обязательства;

STD (short-termed duties) – краткосрочные обязательства.

Оценка вероятности банкротства в моделях КМВ – Мертона также проводится с учетом статистических исследований. Данные по тысячам компаний за многолетний период позволяют оценить «ожидаемую частоту дефолта» (EDF, Expected Default Frequency) – долю фирм, объявивших дефолт при заданном значении расстояния до банкротства.

Модели КМВ – Мертона, по мнению В. Агарвала и Р. Дж. Таффлера, характеризуются следующими основными преимуществами190:

– они являются теоретически обоснованными, отвечая финансовым представлениям о модели банкротства фирмы;

– результаты получаемых прогнозов не зависят от времени, региона или выборки, как, например, в случае с регрессионными моделями;

– рыночные цены отражают ожидаемые денежные потоки, и, следовательно, лучше соответствуют целям диагностики финансовой несостоятельности, чем сведения финансовой отчетности;

– рыночные показатели не подвержены влиянию учетной политики.

Также следует отметить, что финансовая несостоятельность в этом случае осуществляется на основе общедоступной информации о компании. При этом базовые показатели имеют не дискретное, а непрерывное вероятностное распределение. Вероятность финансовых затруднений, в свою очередь, является не дискретной, а непрерывной величиной и изменяется вместе с изменением рыночной стоимости активов компании.

Вместе с тем диагностика банкротства непубличных компаний с использованием рыночных оценок сопряжена с очевидными сложностями. Для фирм, не имеющих достаточно объективной рыночной оценки собственного капитала (в том числе для публичных компаний, акции которых недостаточно ликвидны), возможности рыночных методов существенно ограничены, и на практике они имеет гораздо меньшую значимость, чем комплексная оценка, основанная на эмпирических моделях и экспертных суждениях. Впрочем, даже если речь идет о публичной компании с ликвидными акциями, оценка рыночной стоимости активов может вызвать определенные затруднения. Весьма жестким ограничением в этом отношении является используемое допущение об эффективности фондового рынка.

Отдельные преимущества структурных моделей обращают нас к ограничениям эмпирических моделей, связанным с прогнозным потенциалом финансовой отчетности. Значительный интерес в этой связи представляет оценка факторов, влияющих на возможность и эффективность применения учетных показателей в целях диагностики финансовой несостоятельности.

С момента основания школы прогнозирования корпоративного банкротства прогнозный потенциал финансовой отчетности, как отмечается У. Бивером, М. МакНиколсом и Дж. Раем, был подвержен влиянию трех главных факторов191:

1) введение учетных стандартов, направленных на повышение транспарентности финансовой отчетности;

2) повышение относительной значимости нематериальных активов и производных финансовых инструментов в деятельности предприятий;

3) предпочтение принципа осмотрительности при подготовке финансовой отчетности.

Ожидается, что прогнозный потенциал финансовой отчетности, отвечающей требованию транспарентности, увеличится. Однако в настоящее время при расчете традиционных финансовых показателей по-прежнему не учитываются многие нематериальные активы и производные финансовые инструменты, что в некоторых случаях оказывает значимое влияние на оценку вероятности банкротства. Приверженность принципу осмотрительности неоднозначно влияет на качество финансовой отчетности в зависимости от того, используется ли данный принцип в целях повышения транспарентности или чтобы скрыть важные аспекты финансовой деятельности компании.

В результате эмпирического исследования У. Бивер, М. МакНиколс и Дж. Рай пришли к следующим основным выводам192:

1) надежность прогнозных моделей, построенных по данным финансовой отчетности, остается высокой в течение длительного времени, демонстрируя лишь незначительные изменения;

2) некоторое снижение прогнозного потенциала показателей финансовой отчетности компенсируется улучшением прогнозной способности рыночных показателей;

3) когда финансовые показатели и рыночные переменные объединяются, снижение прогнозного потенциала моделей диагностики банкротства во времени оказывается незначительным.

Комплексные методы диагностики финансовой несостоятельности (банкротства)

Очевидно, что финансовые методы диагностики наиболее популярны на практике, поскольку как минимум финансовые показатели выступают общепринятым языком бизнес-коммуникации. Однако ограничиваться исключительно финансовыми методами крайне нежелательно – необходимо, чтобы диагностика финансовой несостоятельности носила комплексный характер.

Весьма убедительно ограниченность финансовых методов диагностики характеризует Я.В. Соколов: «Современными аналитиками очень много внимания уделяется признакам финансовых затруднений. Однако вопреки распространенному мнению вряд ли возможно прогнозировать такие явления, как банкротство, кризис и т. п. Вся экономическая жизнь зиждется не на математических схемах, а на психологической убежденности лиц, занятых в хозяйственных процессах. И если люди поверят в то, что «завтра рубль упадет», ничто не помешает кризису разразиться. Мир коммерции состоит не из логически изящных конструкций, каковыми сплошь и рядом выступают аналитические модели, а предстает перед человеком подобно жутким и мрачным джунглям»193.

Впрочем, комплексный подход к оценке финансовых затруднений не является в мировой практике чем-то исключительным. В этом отношении уместно обратиться к методическим подходам, применяемым при оценке кредитоспособности. Как отмечает Б. Коласс, финансовая ситуация представляет лишь один из трех элементов, учитываемых при оценке кредитоспособности фирмы. Финансовый анализ, по его мнению, отвечает в среднем лишь за 40 % конечного решения банков. Качественные характеристики фирмы (качество корпоративного управления, качество персонала и т. п.) формируют не менее значимую оценку (40 %). И наконец, «экономический фактор» (ситуация в экономике и отрасли) определяет примерно 20 % решения194.

На страницу:
5 из 7