
Полная версия
Studies in the Theory of Descent, Volume II
This corresponds exactly with the result already deduced from the unparallel development of the independent ontogenetic stages. If the inequality in the phyletic development is more sharply pronounced in this than in the last class of cases, this can be explained by the greater degree of correlation which exists between the individual systems of organs in any single organism as compared with that existing between the ontogenetic stages, which, although developed from one another, are nevertheless almost completely independent. We should have expected à priori that a strong correlation would have here existed, but as a matter of fact this is not the case, or is so only in a very small degree.
Just as in the stages of metamorphosis the inequality of phyletic development becomes the more obliterated the more distant and comprehensive, or, in other words, the greater the period of existence of the groups which we compare, so does the unequal divergence of the systems of organs become obliterated as we bring into comparison larger and larger systematic groups.
It is not inconceivable – although a clear proof of this is certainly as yet wanting – that a variety of the ancestral species would differ only in one single character, such as hairiness, colour, or marking, and such instances would thus agree precisely with the foregoing cases in which only the caterpillar or the butterfly formed a variety. All the more profound modifications however – such for instance as those which determine the difference between two species – are never limited to one character, but always affect several, this being explicable by correlation, which, as Darwin has shown in the case of dogs, may cause modifications in the skull of those breeds having hanging ears in consequence of this last character alone. It must be admitted however that one organ only would be originally affected by a modifying influence. Thus, I am acquainted with two species of a genus of Daphniacea which are so closely allied that they can only be distinguished from one another by a close comparison of individual details. But whilst most of the external and internal organs are almost identical in the two species the sperm-cells of the males differ in a most striking manner, in one species resembling an Australian boomerang in form and in the other being spherical! An analogous instance is furnished by Daphnia Pulex and D. Magna, two species which were for a long time confounded. Nearly all the parts of the body are here exactly alike, but the antennæ of the males differ to a remarkable extent, as was first correctly shown by Leydig.
Similarly in the case of genera there may be observed an incongruence of such a kind that individual parts of the body may deviate to a greater or to a less extent than the corresponding parts in an allied genus. If, for instance, we compare a species of the genus of Daphniacea, Sida, with a species of the nearly allied genus Daphnella, we find that all the external and internal organs are in some measure dissimilar – nevertheless certain of these parts deviate to an especially large extent, and have without question become far more transformed than the others. This is the case, for example, with the antennæ and the male sexual organs. The latter, in Daphnella, open out at the sides of the posterior part of the body as long, boot-shaped generative organs, and in Sida as small papillæ on the ventral side of this region of the body. If again we compare Daphnella with the nearly allied genus Latona, it will be found that no part in the one is exactly similar to the corresponding part in the other genus, whilst certain organs differ more widely than others. This is the case for instance with the oar-like appendages which in Latona are triramous, but in Daphnella, as in almost all the other Daphniacea, only biramous.
In families the estimation of the form-divergence of the systems of organs and parts of the body becomes difficult and uncertain: still it may safely be asserted that the two Cladocerous families Polyphemidæ and Daphniidæ differ much less from one another in the structure of their oar-like appendages than in that of their other parts, such as the head, shell, legs, or abdominal segments. In systematic groups of a still higher order, i. e. in orders, and still more in classes, we might be inclined to consider that all the organs had become modified to an equally great extent. Nevertheless it cannot be conclusively said that the kidneys of a bird differ from those of a mammal to the same extent as do the feathers from mammalian hair, since we cannot estimate the differences between quite heterogeneous things – it can only be stated that both differ greatly. Here also the facts are not such as would have been expected if transformation was the result of an internal developmental force; no uniform modification of all parts takes place, but first one part varies (variety) and then others (species), and, on the whole, as the systematic divergence increases all parts become more and more affected by the transformation and all tend continually to appear changed to an equal extent. This is precisely what would be expected if the transforming impulses came from the environment. An equalization of the differences caused by transformation must be produced in two ways; first by correlation, since nearly every primary transformation must entail one or more secondary changes, and secondly because, as the period of time increases, more numerous parts of the body must become influenced by primary transforming factors.
A tempting theme is here also offered by attempting to trace the inequality of phyletic development to dissimilar external influences, and by demonstrating that individual organs have as a rule become modified in proportion to the divergence in the conditions of life by which they have been influenced, this action, during a given period of time, having been more frequent in the case of one organ than in that of the others, or, in brief, by showing the connection between the causes and effects of transformation.
It would be quite premature, however, to undertake such a labour at present, since it will be long before physiology is able to account for the fine distinctions shown by morphology, and further because we have as yet no insight into those internal adjustments of the organism which would enable us à priori to deduce definite secondary changes from a given primary transformation. But so long as this is impossible we have no means of distinguishing correlative changes from the primary modifications producing them, unless they happen to arise under our observation.
APPENDIX I. 44
Additional Notes on the Ontogeny, Phylogeny, &c., of CaterpillarsOntogeny of the Noctua larvæ.– References have already been given in a previous note (67, p. 166) to observations on the number of legs and geometer-like habits of certain Noctua-larvæ when newly hatched. This interesting fact in the development of these insects furnishes a most instructive application of the principle of ontogeny to the determination of the true affinities, i. e. the blood-relationship of certain groups of Lepidoptera. While the foregoing portions of this work have been in course of preparation for the press, some additional observations on this subject have been published, and I may take the present opportunity of pointing out their systematic bearing – not, indeed, with a view to settling definitively the positions of the groups in question, as our knowledge is still somewhat scanty – but with the object of stimulating further investigation.
Mr. H. T. Stainton has lately recorded the fact that the young larva of Triphæna Pronuba is a semi-looper (Ent. Mo. Mag. vol. xvii. p. 135); and in a recently published life-history of Euclidia Glyphica (Ibid. p. 210) Mr. G. T. Porritt states that this caterpillar is a true looper when young, but becomes a semi-looper when adult. To these facts Mr. R. F. Logan adds (Ibid. p. 237) that “nearly all the larvæ of the Trifidæ are semi-loopers when first hatched.” The Cymatophoræ appear to be an exception, but Mr. Logan points out that this genus is altogether aberrant, and seems to be allied to the Tortricidæ. Summing up the results of these and the observations previously referred to, it will be seen that this developmental character has now been established in the case of species belonging to the following families of the section Genuinæ: —Leucaniidæ, Apameidæ, Caradrinidæ, Noctuidæ, Orthosiidæ, Hadenidæ, and Xylinidæ, as well as the other Trifidæ (excepting Cymatophora).45 The larvæ of the Minores and Quadrifidæ are as a rule semi-loopers when adult and may be true loopers when young, although further observations on this point are wanted. These facts point to the conclusion that the Noctuæ as a whole are phyletically younger than the Geometræ, whilst the Genuinæ and Bombyciformes have further advanced in phyletic development than the Minores and Quadrifidæ. The last two sections are therefore the most closely related to the Geometræ, as correctly shown by the arrangement given in Stainton’s “Manual;” whilst that adopted in Doubleday’s “Synonymic List,” where the Geometræ precede the Noctuæ, is most probably erroneous.
Additional descriptions of Sphinx-larvæ.– In the foregoing essay on “The Origin of the Markings of Caterpillars,” Dr. Weismann has paid special attention to the larvæ of the Sphingidæ and has utilized for this purpose, in addition to his own studies of the ontogeny of many European species, the figures in the chief works dealing with this family published down to the time of appearance of his essay (1876).46 In order to amplify this part of the subject I have added references to more recent descriptions and figures of Sphinx-larvæ published by Burmeister and A. G. Butler, and I have endeavoured in these cases to refer the caterpillars as far as possible to their correct position in the respective groups founded on the ontogeny and phylogeny of their allies. It is, however, obvious that for the purposes of this work figures or descriptions of adult larvæ are of but little value, except for the comparative morphology of the markings; and even this branch of the subject only becomes of true biological importance when viewed in the light of ontogeny. As our knowledge of the latter still remains most incomplete in the case of exotic species, it would be at present premature to attempt to draw up any genealogy of the whole family, and I will here only extend the subject by adding some few descriptions of species which are interesting as having been made from the observations of field-naturalists, and which contain remarks on the natural history of the insects.
Mr. C. V. Riley in his “Second Annual Report on the Noxious, Beneficial, and other Insects of the State of Missouri, 1870,” gives figures and describes the early stages and adult forms of certain grape-vine feeding larvæ of the sub-family Chærocampinæ. The full-grown larva of Philampelus Achemon, Drury, “measures about 3½ inches when crawling, which operation is effected by a series of sudden jerks. The third segment is the largest, the second but half its size, and the first still smaller, and when at rest the two last-mentioned segments are partly withdrawn into the third… The young larva is green, with a long slender reddish horn rising from the eleventh segment and curving over the back.” Mr. Riley then states that full grown specimens are sometimes found as green as the younger ones, but “they more generally assume a pale straw or reddish-brown colour, and the long recurved horn is invariably replaced by a highly polished lenticular tubercle.” The specimen figured was the pale straw variety, this colour deepening at the sides, and finally merging into a rich brown. The markings appear to consist of an interrupted brown dorsal line, a continuous subdorsal line of the same colour, and six oblique scalloped white bars along the side. Whether the colour and marking is adapted to the vine, as is the case with the two varieties of the dimorphic Chærocampa Capensis (q. v.), is not stated. The larva of Philampelus Satellitia, Linn., when newly hatched, and for some time afterwards is “green with a tinge of pink along the sides, and with an immensely long straight pink horn at the tail. This horn soon begins to shorten, and finally curls round like a dog’s tail.” The colour of the insect changes to a reddish-brown as it grows older, and the caudal horn is entirely lost at the third moult. The chief markings appear to be five oblique cream-yellow patches with a black annulation on segments 6–10, and a pale subdorsal line. The caterpillar crawls by a series of sudden jerks, and often flings its “head savagely from side to side when alarmed.” “When at rest, it draws back the fore part of the body and retracts the head and first two joints into the third.” Two points in connection with these species are of interest with respect to the present investigations. The green colour and the possession of a long caudal horn when young shows that these larvæ, like those of Chærocampa Elpenor (p. 178), C. Porcellus (p. 184), and Philampelus Labruscæ (p. 195, note), are descended from ancestors which possessed these characters in the adult state.47 The next point of interest is the attitude of alarm assumed by these larvæ, and effected by withdrawing the head and two front segments into the third.48 The importance of this in connection with the similar habit of ocellated species will be seen on reading the remarks on page 367 bearing upon the initial stages of eye-spots. The other species figured by Mr. Riley are Chærocampa Pampinatrix, Smith and Abbot, and Thyreus Abboti, Swains. The latter has already been referred to (p. 256).
In a paper “On a Collection of Lepidoptera from Candahar” (Proc. Zoo. Soc., May 4th, 1880), Mr. A. G. Butler has described and figured, from materials furnished to him by Major Howland Roberts, the larvæ of three species of Sphingidæ. Chærocampa Cretica, Boisd., feeds on vine; out of 100 specimens examined, there was not one black variety, while in another closely allied species, found at Jutogh and Kashmir, the larva is stated to be as often black as green. The general colour of the caterpillar harmonizes with that of the underside of the vine leaves; it possesses a thread-like dorsal, and a pale yellow subdorsal line; also “a subdorsal row of eye-spots, each consisting of a green patch in a yellow oval, the first spot on the fifth segment being the largest and most distinct, those on each following segment becoming smaller, more flattened, and less distinct, till lost on the twelfth segment, sometimes becoming indistinct after the seventh or eighth segment; these spots are only distinct as eye-spots on the fifth and sixth segments, that on the sixth being flatter than that on the fifth, those on the remaining segments appearing like dashes while the larvæ is green, but more like eyes on its changing colour when full fed.” The change here alluded to is the dark-brown coloration so generally assumed by green Sphinx-larvæ previous to pupation, and which, as I have stated elsewhere (Proc. Zoo. Soc., 1873, p. 155), is probably an adaptation advantageous to such larvæ when crawling over the ground in search of a suitable place of concealment. Making the necessary correction for the different mode of counting the segments, it will be seen that the primary ocelli of this species are in the same position as those of the other species of this genus as described in a previous part of this essay, and that it belongs to the second phyletic group treated of at p. 193. The interesting fact that this species does not display dimorphism, whilst the closely allied form from Kashmir is dimorphic, shows that in the present species the process of double adaptation has not taken place; and this will probably be found to be connected with the habits of life, i. e. the insect being well adapted to the colour of its food-plant may not conceal itself on the ground by day. The caterpillar of Deilephila Robertsi, Butl., is found at Candahar on a species of Euphorbia growing on the rocky hills, and is so abundant that at the end of May every plant with any leaves left on it had several larvæ feeding upon it. “The larvæ are very beautiful and conspicuous, and are very different in colouring according to their different stages of growth.” The general colour is black with white dots and spots; a subdorsal row of large roundish spots, one on each segment, either white, yellow, orange or red; dorsal stripe variable in colour, and sometimes only partially present or altogether absent. “At the end of May most of the larvæ found presented a different appearance; the black disappears more or less, and with it many of the small white spots. In some cases the black only remains as a ring round the larger white spots; the ground-colour therefore becomes yellowish-green or yellow, varying very considerably.” The larva does not change colour previous to pupation. This species, according to the outline figure given (loc. cit., Pl. XXXIX., Fig. 9), appears to belong to the first of Dr. Weismann’s groups, comprising D. Euphorbiæ, D. Dahlii and D. Nicæa (see p. 199), and is therefore in the seventh phyletic stage of development (p. 224). From the recorded habits it seems most probable that the colours and markings of this caterpillar are signals of distastefulness. It is much to be regretted that Major Roberts has not increased the value of his description of this species by adding some observations or experiments bearing on this point. Eusmerinthus Kindermanni, Lederer, feeds on willow. “General colour green, covered with minute white dots and seven long pale yellow oblique lateral bands. (The ground-colour is the same as the willow-leaves on which the larva feeds, the yellow stripes the same as the leaf-stalks, and the head and true legs like the younger branches).” As no subdorsal line is mentioned or figured, this species must be regarded as belonging to the third stage of phyletic development (see p. 242).
I have recently had an opportunity of inspecting a large number of drawings of Sphinx-larvæ in the possession of Mr. F. Moore, and of those species not mentioned in the previous portions of this work the following may be noticed: —Chærocampa Theylia, Linn., like Ch. Lewisii (note 82, p. 194), appears to be another form connecting the second and third phyletic groups of this genus. Ch. Clotho, Drury, belongs to the third group (figured by Semper; see note 3 to this Appendix). The larva of Ch. Lucasii, Walk., offers another instance of the retention of the subdorsal line by an ocellated species. The larva of Ch. Lycetus, Cram., of which Mr. Moore was so good as to show me descriptions made at the various stages of growth, presents many points of interest. It belongs to the third phyletic group, and all the ocelli appear at a very early stage. The dimorphism appears also in the young larvæ, some being green, and others black, a fact which may be explained by the law of “backward transference” (see p. 274). A most suggestive feature is presented by the caudal horn, which in the young caterpillar is stated to be freely movable. It is possible that this horn, which was formerly possessed by the ancestors of the Sphingidæ, and which is now retained in many genera, is a remnant of a flagellate organ having a similar function to the head-tentacles of the Papilio-larvæ, or to the caudal appendages of Dicranura (see p. 289).
Lophostethus Dumolinii, Angas. – The larva of this species differs so remarkably from those of all other Sphingidæ, that I have thought it of sufficient interest to publish the following description, kindly furnished by Mr. Roland Trimen, who in answer to my application sent the following notes: – “My knowledge of the very remarkable larva of this large and curious Smerinthine Hawk-moth is derived from a photograph by the late Dr. J. E. Seaman, and from drawings and notes recently furnished by Mr. W. D. Gooch. The colour is greenish-white, inclining to grey, and in the male there is a yellow, but in the female a bluish, tinge in this. All the segments but the second and the head bear strong black spines, having a lustre of steel blue, and springing from a pale yellow tubercular base. The longest of these spines are in two dorsal rows from the fourth to the eleventh segment, the pairs on the fourth and fifth segments being longer than the rest, very erect, and armed with short simple prickles for three-fourths of their upper extremity. The anal horn, which is shorter than the spines, is of the same character as the latter, being covered with prickles, and much inclined backwards. Two lateral rows of similar shorter spines extend from the fourth to the 12th segment, and on each of the segments 6–11 the space between the upper and lower spines is marked with a conspicuous pale yellow spot. Two rows of smaller similar spines extend on each side (below the two rows of larger ones) from the second to the thirteenth segment, one spine of the lowermost row being on the fleshy base of each pro-leg. All the pro-legs are white close to the base, and russet-brown beyond. Head smooth, unarmed in adult, greenish-white with two longitudinal russet-brown stripes on face.
“The young larvæ have proportionally much longer and more erect spines with distinct long prickles on them. There is a short pair besides, either on the back of the head or on the second segment. Moreover, the dorsal spines of the third and fourth segments, and the anal horn (which is quite erect, and the longest of all), are longer than the rest, and distinctly forked at their extremity.
“Mr. Gooch notes that these young larvæ might readily be mistaken for those of the Acrææ, and suggests that this may protect them. He also states that the yellow lateral spots are only noticed after the last moult before pupation, and that the general resemblance of the larva as regards colour is to the faded leaves of its food-plant, a species of Dombeia.”
The forked caudal horn in the young larva of this species is of interest in connection with the similar character of this appendage in the young caterpillar of Hyloicus Pinastri, p. 265.
Retention of the Subdorsal Line by Ocellated Larvæ.– It has already been shown with reference to the eye-spots of the Chærocampa-larvæ, that these markings have been developed from the subdorsal line, and that, in accordance with their function as a means of causing terror, this line has in most species been eliminated in the course of the phylogeny from those segments bearing the eye-spots in order to give full effect to the latter (see p. 379). In accordance with the law that a character when it has become useless gradually disappears, the subdorsal is more or less absent in all those species in which the ocelli are most perfectly developed; and it can be readily imagined that in cases where adaptation to the foliage exists the suppression of this line would under certain conditions be accelerated by natural selection. On the other hand, it is conceivable that the subdorsal line may under other conditions be of use to a protectively coloured ocellated species by imitating some special part of the food-plant, under which circumstances its retention would be secured by natural selection.
Such an instance is offered by Chærocampa Capensis, Linn.; and as this case is particularly instructive as likewise throwing light upon the retention of the subdorsal by certain species having oblique stripes (see p. 377, and note 166, p. 378), I will here give some details concerning this species which have been communicated to me by Mr. Roland Trimen, the well-known curator of the South African Museum, Cape Town. The caterpillar of C. Capensis, like so many other species of the genus, is dimorphic, one form being a bright (rather pale) green, and the other, which is much the rarer of the two, being dull pinkish-red. Both these forms are adapted in colour to the vine on which they feed, the red variety according to some extent with the faded leaves of the cultivated vines, but to a greater extent with the young shoots and underside of the leaves of the South African native vine (Cissus Capensis), on which it also feeds. There are two eye-spots in this species in the usual positions; they are described as being blue-grey in a white ring, and raised so as to project a little. The subdorsal is white, and is bordered beneath by a wide shade of bluish-green irrorated with white dots, and crossed by an indistinct white oblique ray on each segment. These last markings are probably remnants of an oblique striping formerly possessed by the progenitor of this and other species of the genus (see, for instance, Fig. 25, Pl. IV., one of the young stages of C. Porcellus). It is possible that these rudimentary oblique stripes are now of service in assisting the adaptation of the larva to its food-plant, but this cannot be decided without seeing the insect in situ.