bannerbanner
Buffon's Natural History. Volume X (of 10)
Buffon's Natural History. Volume X (of 10)полная версия

Полная версия

Buffon's Natural History. Volume X (of 10)

Язык: Английский
Год издания: 2017
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
10 из 18

“By these experiments, and the observations which have arisen therefrom, we may judge of the difficulty of determining the nature of platina. It is very certain that it contains some parts which are verifiable even without the addition of a fierce fire; it is also certain that all platina contains iron and attractable parts; but if the Prussian alkali never affords blue but with the grains which the loadstone attracts, we should conclude, that those which resist it are pure platina, which of itself has no magnetical virtue, and of which iron does not make an essential part. We must suppose that a sufficient fusion, or perfect cupellation, might decide the question; at least, these operations appear to have, in fact, deprived it of every magnetic virtue, by separating it from all foreign bodies; but the last observation proves, in an incontrovertible manner, that this magnetic property was, in reality, only weakened, and perhaps masked or buried, since it reappeared when it was ground.”

From these experiments of M. de Morveau there results, 1. That we may expect to meet platina without addition, by applying the fire of it several times successively, because the best crucibles might not resist the action of so fierce a fire during the whole time that the complete operation would require.

2. That by melting it with lead, and assaying them several times, we should in the end vitrify all the lead and the platina; and that this experiment would be able to purge it from a part of the foreign matters it contains.

3. That by melting without any addition, it seems to purge itself partly into the vitrescible matters it includes, since it emits to its surface small drops of glass, which form pretty considerable masses, and which we can easily separate after refrigeration.

4. That by making experiments on Prussian blue with the grains of platina, which appeared to be most insensible to the loadstone, we were not always certain of obtaining it; a circumstance which never fails with grains that have more or less sensibility to magnetism.

5. It appears that neither fusion nor cupellation can destroy all the iron with which platina is intimately penetrated; the pieces melted or assayed, appeared, in reality, equally insensible to the action of the loadstone; but having pounded them in a mortar, we found magnetical parts; so much the more abundant as the platina was reduced to a fine powder. The first piece, whose grains were only agglutinated, being ground, rendered many more magnetical parts than the second and third, the grains of which had undergone a stronger fusion; but, nevertheless, being both ground, they furnished magnetical parts; insomuch that it cannot be doubted that there is iron in platina, after it has undergone the fiercest efforts of fire, and the devouring actions of the heat in the cupel. This demonstrates, that this mineral is really an intimate mixture of gold and iron, which hitherto has not been able to separate.

6. I made another observation with M. Morveau on melted, and afterwards on ground platina; namely, that it takes in grinding precisely the same form as it had before it had been melted; all the grains of this melted and ground platina are similar to those of the natural, as well in form as variety of size; and they appear to differ only because the smallest alone suffer themselves to be raised by the loadstone, and in so much the less quantity as the platina has endured the fire. This seems also to prove, that, although the fire has been strong enough not only to burn and vitrify, but even to drive off a part of the iron with other vitrescible matter which it contains; the fusion, nevertheless, is not so complete as that of other perfect metals, since, in grinding, it retakes the same figure as it had before fusion.

EXPERIMENTS ON LIGHT, AND ON THE HEAT IT MAY PRODUCE

INVENTION OF MIRRORS TO BURN AT GREAT DISTANCES

THE story of the burning glasses of Archimedes is famous; he is said to have invented them for the defence of his country; and he threw, say the ancients, the fire of the sun with such force on the enemy’s fleet, as to reduce it into ashes as it approached the ramparts of Syracuse. But this story, which, for fifteen or sixteen centuries, was never doubted, has been contradicted, and treated as fabulous in these latter ages. Descartes, with the authority of a master, has attacked this talent attributed to Archimedes; he has denied the possibility of the invention, and his opinion has prevailed over the testimonies and credit of the ancients. Modern naturalists, either through a respect for their philosopher, or through complaisance for their contemporaries, have adopted the same opinion. Nothing is allowed to the ancients but what cannot be avoided. Determined, perhaps, by these motives, of which self-love too often is the abettor, have we not naturally too much inclination to refuse what is due to our predecessors? and if, in our time, more is refused than was in any other, is it not that, by being more enlightened, we think we have more right to fame, and more pretensions to superiority?

Be that as it may, this invention was the cause of many other discoveries of antiquity which are at present unknown, because the facility of denying them has been preferred to the trouble of finding them out; and the burning glasses of Archimedes have been so decried, that it does not appear possible to re-establish their reputation; for, to call the judgment of Descartes in question, something more is required than assertions, and there only remained one sure decisive mode, but at the same time difficult and bold, which was to undertake to discover glasses that might produce the like effects.

Though I had conceived the idea, I was for a long time deterred from making the experiment, from the dread of the difficulty which might attend it; at length, however, I determined to search after the mode of making mirrors to burn at a great distance, as from 100 to 300 feet. I knew, in general, that the power of reflecting mirrors, never extended farther than 15 or 20 feet, and with refringent, the distance was still shorter: and I perceived it was impossible in practice to form a metal, or glass mirror, with such exactness as to burn at these great distances. To have sufficient power for that, the sphere, for example, must be 800 feet diameter; therefore, we could hope for nothing of that kind in the common mode of working glasses; and I perceived also that if we could even find a new method to give to large pieces of glass, or metal, a curve sufficiently slight, there would still result but a very inconsiderable advantage.

But to proceed regularly, it was necessary first to see how much light the sun loses by reflection at different distances, and what are the matters which reflect it the strongest; I first found, that glasses when they are polished with care, reflect the light more powerfully than the best polished metals, and even better than the compounded metal with which telescope mirrors are made; and that although there are two reflectors in the glasses, they yet give a brighter and more clear light than metal. Secondly, by receiving the light of the sun in a dark place, and by comparing it with this light of the sun reflected by a glass, I found, that at small distances, as four or five feet, it only lost about half by reflection, which I judged by letting a second reflected light fall on the first; for the briskness of these two reflected lights appeared to be equal to that of direct light. Thirdly, having received at the distances of 100, 200, and 300 feet, this light reflected by great glasses, I perceived that it did not lose any of its strength by the thickness of the air it had to pass through.

I afterwards tried the same experiments on the light of candles; and to assure myself more exactly of the quantity of weakness that reflection causes to this light, I made the following experiments:

I seated myself opposite a glass mirror with a book in my hand, in a room where the darkness of the night would not permit me to distinguish a single object. In an adjoining room I had a lighted candle placed at about 40 feet distance; this I approached nearer and nearer, till I could read the book, when the distance was about 24 feet. Afterwards turning the book, I endeavoured to read by the reflected light, having by a parchment intercepted the part of the light which did not fall on the mirror, in order to have only the reflected light on my book. To do so I was obliged to approach the candle nearer, which I did by degrees, till I could read the same characters clearly by the same light, and then the distance from the candle, comprehending that of the book to the mirror, which was only half a foot, I found to be in all 15 feet. I repeated this several times, and had always nearly the same results; from whence I concluded, that the strength, or quantity, of direct light is to that of reflected light, as 576 to 225; therefore, the light of five candles reflected by a flat glass, is nearly equal to that of the direct light of two.

The light of a candle, therefore, loses more by reflection than by the light of the sun; and this difference proceeds from the rays of the former falling more obliquely on the mirror than the rays of the sun, which come almost parallel. This experiment confirmed what I had at first found, and I hold it certain, that the light of the sun loses only half by its reflection on a glass mirror.

This first information being acquired, I afterwards sought what became of the images of the sun when received at great distances. To be perfectly understood we must not, as is generally done, consider the rays of the sun as parallel; and it must also be remembered, that the body of the sun occupies an extent of about 32 minutes; that consequently the rays which issue from the upper edge of the disk, falling on a point of a reflecting surface, the rays which issue from the lower edge falling also on the same point of this surface, they form between them an angle of 32 minutes in the incidence, and afterwards in the reflection, and that, consequently, the image must increase in size in proportion as it is farther distant. Attention must likewise be paid to the figure of those images; for example, a plain square glass of half a foot, exposed to the rays of the sun, will form a square image of six inches, when this image is received at the distance of a few feet; by removing farther and farther off, the image is seen to increase, afterwards to become deformed, then round, in which state it remains still increasing in size, in proportion as we are more distant from the mirror. This image is composed of as many of the sun’s disks as there are physical points in the reflecting surface; the middle point forms an image of the disk, the adjoining points form the like, and of the same size, which exceed a little the middle disk: it is the same with the other points, and the image is composed of an infinity of disks, which surmounting regularly, and anticipating circularly one over the other, form the reflected image, of which the middle point of the glass is the centre.

If the image composed of all these disks is received at a small distance, then their extent being somewhat larger than that of the glass, this image is of the same figure and nearly of the same extent as the glass; but when the image is received at a great distance from the glass, where the extent of the disks is much greater than that of the glass, the image no longer retains the same figure as the glass, but becomes necessarily circular. To find the point of distance where the image loses its square figure, we have only to seek for the distance where the glass appears under an angle equal to that the sun forms to our sight, i. e. an angle of 32 minutes, and this distance will be that where the image will lose its square figure, and become round, for the disks having always an equal line to the semi-circle, which measures an angle of 32 minutes for a diameter, we shall find by this rule that a square glass of six inches loses its square figure at the distance of about 60 feet, and that a glass of a foot square loses it at 120 feet, and so on of the rest.

By reflecting a little on this theory we shall no longer be astonished to find, that at very great distances a large and small glass afford an image of nearly the same size, and which only differs by the intensity of the light; we shall no longer be surprised that a round, square, long, or triangular glass, or any other figure, always yields round images5; and we shall evidently see that images do not increase and lessen by the dispersion of light, or by any loss in passing through the air, as some naturalists have imagined; but that, on the contrary, it is occasioned by the augmentation of the disks, which always occupy a space of 32 minutes to whatever distance they are removed.

So, likewise, we shall be convinced, by the simple exposition of this theory, that curves, of any kind, cannot be used with advantage to burn at a great distance, because the diameter of the focus can never be smaller than the chord, which measures an angle of 32 minutes, and that, consequently, the most perfect concave mirror, whose diameter is equal to this chord, will never produce double the effect of a plane mirror of the same surface; and if the diameter of a curved mirror were less than the chord, it would scarcely have more effect than a plane mirror of the same surface.

When I had well considered the above I had no longer a doubt that Archimedes could not burn at a distance but with plane mirrors, for, independently of the impossibility they then felt, and which we feel at pleasure, of making concave mirrors with so large a focus, I was well aware that the reflection I have just made could not have escaped this great mathematician. Besides, there is every reason to suppose that the ancients did not know how to make large masses of glass; that they were ignorant of the art of burning it to make large glasses, possessing only the method of blowing it, and making bottles and vases; from which consideration I was led to conclude, that it was with plane mirrors of polished metals, and by the reflections of the sun, that Archimedes had been enabled to burn at a distance. But as I perceived that glass mirrors reflected the light more powerfully than the most polished mirrors, I thought to construct a machine to coincide in the same point the reflected images by a great number of these plane glasses, being well convinced that this was the sole mode of succeeding.

Nevertheless, I had still some doubts remaining, which appeared to me well founded, for thus I reasoned. Supposing the burning distance to be 240 feet, I perceived clearly that the focus of my mirror could not have a less than two feet diameter; in which case what would be the extent I should be obliged to give to my assemblage of plane mirrors to produce a fire in so great a focus? It might be so great that the thing would be impracticable in the execution, for, by comparing the diameter of the focus to the diameter of the mirror, in the best reflecting mirrors, I observed that the diameter of the Academy’s mirror, which is three feet, was 108 times bigger than its focus, which was no more than four lines; and I concluded, that to burn as strong at 240 feet it was necessary that my assemblage of mirrors should be 216 feet diameter to have a focus of two feet; now a mirror of 216 feet diameter was certainly an impossible thing.

This mirror of three feet diameter burnt strong enough to melt gold, and I was desirous to see how much I should gain by reducing its action to the burning of wood. For this purpose I used circular zones of paper on the mirrors to diminish the diameter, and I found that there was no longer power enough to inflame dry wood when its diameter was reduced to little more than four inches; therefore, taking five inches, or sixty lines, for the diameter necessary to burn with a focus of four lines, it appeared, that to burn equally at 210 feet, where the focus should necessarily have two feet diameter, I should require a mirror of 30 feet diameter, which appeared still as impossible, or at least impracticable.

To such positive conclusions, and which others would have regarded as demonstrations of the impossibility of the mirror, I had only a supposition to oppose; but an old supposition, on which the more I reflected the more I was persuaded that it was not without foundation; namely, that the effects of heat might possibly not be in proportion to the quantity of light, or, what amounts to the same, that at an equal intensity of light large focuses must burn brisker than the small.

By estimating heat mathematically, it is not to be doubted but that the power of a focus of the same length is in proportion to the surface of the mirror. A mirror whose surface is double that of another, must have the same sized focus, and this focus must contain double the quantity of light which the first contained; and in the supposition, that effects are always in proportion to their causes, it might be presumed that the heat of this second focus should be double that of the first.

So likewise, and by the same mathematical estimation, it has always been thought, that at an equal intensity of light, a small focus ought to burn as much as a large one, and that the effect of the heat ought to be in proportion to this intensity of light: insomuch (says Descartes) that glasses, or extremely small mirrors, may be made, which will burn with as much violence as the large. I at first thought that this conclusion, drawn from mathematical theory, might be found false in practice, because heat being a physical quality, of the action and propagation of which we know not the laws, it seemed to me, that there was some kind of temerity in thus estimating its effects by a simple speculation.

I had, therefore, once more, recourse to experiments. I took metal mirrors of different focuses and different degrees of polish, and by comparing the different actions on the same fusible or combustible matters, I found, that at an equal intensity of light, large focuses constantly have more effect than small, and I discovered the same to be the case with refracting mirrors.

It is easy to assign the reason of this difference, if we consider that heat communicates nearer and nearer, and disperses, if I may so speak, when it is even applied on the same point: for example, if we let the focus of a burning glass fall on the centre of a crown piece, and that this focus was only a line in diameter, the heat produced on the centre disperses and extends over and throughout the whole piece: thus all the heat, although used at first to the centre of the crown, does not stop there, and consequently cannot produce so great an effect as if it did. But if, instead of a focus of a line which falls upon the centre of the crown, we let fall a focus of equal intensity on the whole crown, every part being alike heated, then instead of experiencing the less heat, it acquires an augmentation; for the middle profiting of the heat with the other points which surround it, the crown piece will be melted in this latter case, while in the first, it will only be slightly heated.

After these experiments and reflections, I began to entertain sanguine hopes of making mirrors to burn at a great distance; for I no longer dreaded as before, the great extent of the focus; I was persuaded, on the contrary, that a focus of a considerable breadth, as two feet, and which in the intensity of the light would not be near so great as in a small focus of four lines, might, nevertheless, produce inflammation, and with more power; and that, consequently, this mirror, which, by mathematical theory, ought to have at least thirty feet diameter, would be reduced to one of eight or ten feet at most, which was not only a possible, but even a very practicable thing.

I then thought seriously of executing my project: I had at first a design of trying to burn at 200 or 300 feet distance with circular or hexagonal glasses of a square foot in surface, and I was desirous of having four iron carriages for them, with screws to each to move them, and a spring to adjust them; but the considerable expense that this required made me quit that idea, and I took two common glasses of six inches by eight, and a wooden adjustment, which, in fact, was less solid and precise, but the expence was more consistent with a mere experiment: the mechanism of which was executed by M. Passement.

It is sufficient to say, that it was at first composed of 168 glasses of six inches by eight each, about four lines distant from each other; these glasses moved in all directions, and the four lines of space between them not only served for the freedom of this motion, but also to let the operator see the place where he was to conduct his images. By means of this construction, 168 images could be thrown on one point, and, consequently, burn at several distances, as at 20, 30, and to 150 feet. By increasing the size of the mirror, or by making other mirrors like the first, we are certain of throwing fire to still greater distances, or to increase as much as we please the force or activity of those first distances.

It is only to be observed, that the motion here spoken of is not very easy to be executed, and that also there is a very great choice to be made in the glasses; for they are not all equally good, though they appear so at the first inspection. I was obliged to pick out of more than 500 the 168 I made use of. The method of trying them is to receive at 150 feet distance the reflected image of the sun, as a vertical plane; we must select those which give a round and terminated image, and reject those, whose thicknesses being unequal in different parts, or the surface a little concave or convex, have images badly terminated, double, treble, oblong, &c. according to the different defects found in the glasses.

By the first experiment which I made the 23d of March, 1747, at noon, I set fire to a plank of fir at 66 feet distance, with 40 glasses only, about a quarter of the mirror. It must be observed that not being yet mounted, it was very disadvantageously placed, forming an angle with the sun of twenty degrees declination, and another of more than ten degrees inclination.

The same day I set fire to a pitchy and sulphureous plank at 126 feet distance, with eighty-eight glasses, the mirror being still placed disadvantageously. It is well known, that to burn with the greatest advantage the mirror should be directly opposed to the sun, as well as the matters to be inflamed; so that, by supposing a perpendicular plane on the plane of the mirror, it must pass by the sun, and, at the same time, through the midst of combustible matters.

The 3d of April, at four o’clock in the afternoon, the mirror being mounted, produced a slight inflammation on a plank covered with pitch at 138 feet distance, although the sun was weak and the light pale. Great care must be taken, when we approach the spot where the combustible matters are, not to look on the mirror; for if, unfortunately, the eyes should meet the focus, inevitable blindness will ensue.

The 4th of April, at eleven in the morning, although the sun appeared watery, and the sky cloudy, yet it produced, with 154 glasses, so considerable a heat at 158 feet, that in less than two minutes it made a deal plank smoke, and which would certainly have flamed, if the sun had not suddenly disappeared.

The ensuing day, the 5th of April, at three o’clock in the afternoon, we set fire, in a minute and a half, at 150 feet distance, to a plank sulphured and mixed with coals, with 154 glasses. When the sun is powerful, only a few seconds is required to produce inflammation.

The 10th of April in the afternoon, the sun being bright, we set fire to a fir plank at 150 feet distance, with only 128 glasses: the inflammation was very sudden, and made in all the extent of the focus, which was about sixteen inches diameter at this distance.

The same day, at half past two o’clock, we threw the fire on another plank, partly pitched and covered with sulphur in some places: the inflammation was made very suddenly; it began by the parts of the wood which were uncovered, and the fire was so violent, that the plank was obliged to be dipt in water to extinguish it: there were 148 glasses at 150 feet distance.

The eleventh of April, the focus being only 20 feet distant from the mirror, it only required 12 glasses to inflame small combustible matters; with 21 glasses we set fire to another plank which had already been partly burnt; with 45 glasses we melted a block of tin of 6lb. weight; and with 117 glasses we melted thin pieces of silver, and reddened an iron plate; and I am also persuaded, that by using all the glasses of the mirror we should have been enabled to have melted metals at 50 feet distance; and as the focus at this distance was six or seven inches broad, we should be able to make trials on all metals, which it was not possible to do with common mirrors, whose focus is either very weak or 100 times smaller than that of mine. I have remarked, that metals, and especially silver, smoke much before they melt; the smoke was so striking that it shaded the ground, and it was there I looked on it attentively, for it is not possible to look a moment on the focus when it falls on the me tal, the lustre being much more dazzling than that of the sun.

На страницу:
10 из 18