bannerbanner
Генезис. Небо и Земля. Том 1. История
Генезис. Небо и Земля. Том 1. История

Полная версия

Генезис. Небо и Земля. Том 1. История

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
6 из 20

§122. Явление броуновского движения, названо по имени его открывателя Роберта Броуна (1827), который установил, что малые частицы взвеси – пылинки хаотично движутся под воздействием ударов молекул жидкости. [231,232] Интенсивность броуновского движения увеличивается с повышением температуры, уменьшением вязкости среды, уменьшением размера частиц. Оно не зависит от химической природы частиц и времени наблюдения. Броуновское движение служит доказательством существования еще более мелких частиц – молекул жидкости, невидимых даже в самые сильные оптические микроскопы.

§123. В 1829 году Томас Грэм провел серию экспериментов по эффузии83 и обнаружил, что при постоянных температуре и давлении скорость истечения газа обратно пропорциональна квадратному корню из плотности газа. [233] Грэм вывел закон: чем меньше плотность идеального газа, тем больше скорость его истечения через микроскопические отверстия в стенках сосуда. Теперь закон об относительной скорости истечения разных газов из одинаковых сосудов сформулирован так: чем меньше относительная молекулярная масса газа, тем выше скорость эффузии. [234] Закон Грэма нашел применение и при конструировании космических кораблей, предназначенных для длительного нахождения человека в космосе.

§124. Карл Фридрих Гаусс (1829) в работе «Об одном новом общем законе механики» постулировал принцип наименьшего принуждения84, сформулировав, что «движение системы материальных точек, связанных между собой произвольным образом и подверженных любым влияниям, в каждое мгновение происходит в наиболее совершенном, какое только возможно, согласии с тем движением, каким обладали бы эти точки, если бы все они стали свободными, то есть происходит с наименьшим возможным принуждением, если в качестве меры принуждения, применённого в течение бесконечно малого мгновения, принять сумму произведений массы каждой точки на квадрат величины её отклонения от того положения, которое она заняла бы, если бы была свободной». [235].

§125. Симеон Дени Пуассон (1829) вывел эллиптическое дифференциальное уравнение в частных производных, которое описывает электростатическое поле, стационарное поле температуры, поле давления, поле потенциала скорости в гидродинамике. [236] Это уравнение имеет вид равенства оператора Лапласа85 и вещественной или комплексной функции на некотором многообразии. Если функция стремится к нулю, то уравнение Пуассона превращается в уравнение Лапласа, как частный случай уравнения Пуассона. Уравнение Пуассона может быть решено с использованием функции Джорджа Грина (1828); например, экранированное уравнение Пуассона. [237] Есть различные методы для получения численных решений86.

§126. Немецкий астроном Фридрих Вильгельм Август Аргеландер (1830) разработал простой метод визуальных оценок блеска исследуемой звезды по сравнению с окружающими постоянными звёздами (метод степеней), который широко применяется и поныне, впервые ввёл десятые доли в измерение звёздных величин, ввел современную номенклатуру переменных звёзд. [238] Аргеландер предложил обозначать переменные звезды каждого созвездия, в порядке их обнаружения, заглавными буквами латинского алфавита начиная с от R до Z (поскольку буквы до Q встречались в названии звезд в атласе Байера). [239] Например, первая переменная обнаруженная в созвездии Андромеды получала название R Andromedae или сокращенно R And. Вторая переменная звезда в этом же созвездии получила название S And и так далее до Z. В 1843 году вышел в свет труд Аргеландера «Новая Уранометрия» – атлас и каталог всех звезд, видимых невооруженным глазом. [240] В нём были упорядочены обозначения звезд, четко разграничены созвездия и более точно (до десятых долей) указаны звёздные величины.

§127. Бенуа Поль Эмиль Клапейрон (1834) придал математическую форму идеям Карно, содержащим фактически формулировку второго начала термодинамики, и впервые ввёл в термодинамику графический метод – индикаторные диаграммы, в частности предложил систему координат давление и объем (р-V). [241] Он вывел уравнение состояния идеального газа, объединяющее закон Бойля—Мариотта, закон Гей-Люссака и закон Авогадро, которое обобщено в 1874 году Дмитрием Ивановичем Менделеевым и впоследствии названо уравнением Менделеева—Клапейрона, как формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. [242] Идеальным газом называют газ, для которого можно пренебречь размерами молекул и силами молекулярного взаимодействия; соударения молекул в таком газе происходят по закону соударения упругих шаров. Реальные газы ведут себя подобно идеальному, когда среднее расстояние между молекулами во много раз больше их размеров, то есть при достаточно больших разрежениях87.

§128. Уильям Роуэн Гамильтон (1834—1835) указал способ построения «фундаментальной функции» (функции Гамильтона), из которой дифференцированием и конечными преобразованиями, без какого-либо интегрирования, получаются все решения вариационной задачи, опубликовав новый вариационный принцип, известный ныне как принцип стационарного или наименьшего действия, или принцип Гамильтона для механических систем со стационарными голономными связями. [243,244] Проварьировав действие независимо по всем обобщенным координатам и сопряженным им импульсам посредством лагранжиана динамической системы, Гамильтон получил новую форму уравнений движения механических систем, так называемые, канонические уравнения Гамильтона. Полученная система канонических уравнений содержит вдвое больше дифференциальных уравнений, чем у Лагранжа, но зато все они первого порядка, тогда как у Лагранжа – второго. Принцип наименьшего действия Гамильтона, точнее принцип стационарности действия – способ получения уравнений движения физической системы при помощи поиска стационарного88 значения специального функционала – действия89. Принцип стационарности действия – наиболее важный среди семейства экстремальных принципов. Набор координат и импульсов характеризует, в том числе и в каждый момент времени, динамическое состояние системы и, таким образом, полностью определяет эволюцию (движение) данной системы.

§129. Французский математик, механик и инженер Гаспар-Гюстав де Кориолис (1835) обратил внимание на эффект, что во вращающейся системе отсчета (например, на поверхности Земли) наблюдателю кажется, что тела движутся по изогнутой траектории. [245] В его статье о выходе энергии машин с вращающимися частями, такими как водяные колеса, рассматривались дополнительные силы, которые обнаруживаются при вращении. Кориолис разделил эти дополнительные силы на две категории. Вторая категория содержала силу, возникавшую из поперечного произведения угловой скорости системы координат и проекции скорости частицы в плоскость, перпендикулярную оси вращения системы. Кориолис называл эту силу «составной центробежной силой» из-за ее аналогии с центробежной силой, отнесенной к первой категории. Иногда этот эффект объясняют действием некой фиктивной силы – силы Кориолиса (одна из сил инерции, использующаяся при рассмотрении движения материальной точки относительно вращающейся системы отсчёта). Добавление силы Кориолиса к действующим на материальную точку физическим силам позволяет учесть влияние вращения системы отсчёта на такое движение90.

§130. Обобщение принципа наименьшего осуществил Карл Густав Якоб Якоби (1837), рассмотрев проблему геометрически, как нахождение экстремалей вариационной задачи в конфигурационном пространстве с неевклидовой метрикой. [246] В частности, Якоби указал, что при отсутствии внешних сил траектория системы представляет собой геодезическую линию в конфигурационном пространстве.

§131. В 1838 году под редакцией Джоржа Бидделя Эйри был опубликован каталог циркумполярных91 звёзд Стивена Грумбриджа, умершего в 1832 году. [247] Каталог насчитывал 4239 звёзд вплоть до восьмой-девятой величины, которые Грумбридж фиксировал при помощи изготовленного в 1806 году меридианного круга по его заказу конструктором инструментов Эдвардом Траутоном.

§132. В 1838 году Фридрих Вильгельм Бессель, проведя ряд вычислений расстояний до звезд, опубликовал очень надёжный параллакс звезды 61 Лебедя и правильно измерил такое расстояние. [248] Эти измерения впервые доказали, что звёзды – это далёкие солнца, и стало ясно, что светимость всех этих объектов соответствуют солнечным значением92. В 1841 году по данным многих измерений Бессель вычислил размеры земного эллипсоида, которые широко применялись в геодезии и картографии вплоть до середины XX века, а в 1844 году предсказал наличие у Сириуса и Проциона малоразличимых звёзд-спутников. [249,250]

§133. Австриец Кристиан Доплер (1842) теоретически предсказал эффект, названный его именем, согласно которому воспринимаемая частота волны зависит от относительной скорости ее источника. [251,252] Первая экспериментальная проверка была сделана голландцем Кристианом Баллотом, который посадил духовой оркестр в открытый железнодорожный вагон, а на платформе собрал группу музыкантов с абсолютным слухом. Всякий раз, когда состав с музыкальным вагоном проезжал мимо платформы, духовой оркестр тянул какую-либо ноту, а наблюдатели (слушатели) записывали слышащуюся им нотную партитуру. [253] Как и ожидалось, кажущаяся высота звука оказалась в прямой зависимости от скорости поезда, что и было предсказано законом Доплера.

§134. Гамильтон (1844) ввел в алгебраическое исчисление кватернионы93 – систему гиперкомплексных чисел, образующую векторное пространство размерностью четыре над полем вещественных чисел, которая удобна для описания изометрий трёх- и четырёхмерного евклидовых пространств, и получившая широкое распространение в механике. [254] Умножение кватернионов не является коммутативным, поэтому алгебраическая система кватернионов является телом, но не полем.

§135. В 1845 году Майкл Фарадей сделал несколько выдающихся открытий, в том числе: поворот плоскости поляризации света в веществе, помещённом в магнитное поле (так называемый «эффект Фарадея») и диамагнетизм. [255] Он верил, что свет – это электромагнитное явление, и поэтому на него должны воздействовать электромагнитные силы. Он потратил значительные усилия на поиски доказательств электрических сил, влияющих на поляризацию света через то, что теперь известно как электрооптические эффекты, начиная с разложения электролитов. Фарадей попытался исследовать влияние магнитных сил на свет, проходящий через различные вещества. После нескольких неудачных попыток ему довелось испытать кусок «тяжелого» стекла, содержащего следы свинца, который он сделал во время своей предыдущей работы по производству стекла. Фарадей заметил, что когда луч поляризованного света проходит через стекло в направлении приложенной магнитной силы, поляризация света поворачивается на угол, пропорциональный силе этой силы. Позже Фаредей смог воспроизвести этот эффект в нескольких других твердых телах, жидкостях и газах, приобретя более сильные электромагниты. Он писал, что когда противоположные магнитные полюса находились на одной стороне, на поляризованный луч оказывалось воздействие, и таким образом было доказано, что магнитная сила и свет имеют отношение друг к другу. Таким образом Фарадей установил продольный магнитооптический эффект94, который заключается в том, что при распространении линейно-поляризованного света через оптически неактивное вещество, находящееся в магнитном поле, наблюдается вращение плоскости поляризации света. [256] А подводя итоги сделал вывод, что ему удалось осветить магнитную кривую или силовую линию и намагнитить луч света. Экспериментальные методы Фарадея были недостаточно чувствительны, и эффект был измерен только тридцать лет спустя Джоном Керром.

§136. Французский математик Урбан Жан Жозеф Леверье (1846) был заинтересован расхождениями между наблюдаемыми и Кеплеровскими орбитами Меркурия и Урана. [257] Он предсказал существование Нептуна, как и предполагали многие, и рассчитал его предполагаемое положение, основываясь на причине отклонения орбиты и влиянии на движение Урана вокруг Солнца, при этом существование и местоположение Нептуна было независимо выведено Джоном Кучем Адамсом (1846) в Великобритании. [258] Немецкий астроном Иоганн Готфрид Галле, работавший вместе со своим аспирантом Генрихом Луи д'Арре, открыл Нептун в пределах одного градуса от предсказанного Леверье положения в ту самую ночь, когда он получил письмо последнего. Оказалось, что расчеты и Адамса, и Леверье были основаны на неверных предположениях о Нептуне, а наблюдателям чрезвычайно повезло наткнуться на правильное местоположение планеты. Название найденной планете дал Леверье при поддержке Василия Струве. Спустя всего семнадцать дней после открытия Нептуна Уильям Ласселль открыл его спутник Тритон. [259]

§137. Французский физик Арман Ипполит Луи Физо (1848) обобщил на простом опыте реальность принципа Доплера, распространив его теорию на свет, и, проводя аналогию между тонами и цветами, первым указал на смещение линий в спектрах небесных светил, если существует относительное перемещение (по направлению луча зрения) светового источника и наблюдателя, рассчитав смещение линий в спектрах небесных светил. [260] Отличие электромагнитного эффекта Физо от акустического эффекта Доплера в том, что в акустическом эффекте молекулы связаны между собой и среда колеблется за счёт упругости, а в электромагнитном эффекте Физо среды нет. Примерный расчёт смещения Физо сделал в том же году для Венеры. В 1860 году Эрнст Вальдфрид Йозеф Вензель Мах предсказал, что линии поглощения в спектрах звёзд, связанные с самой звездой, должны обнаруживать эффект Доплера, также в этих спектрах существуют линии поглощения земного происхождения, не обнаруживающие эффект95 Доплера. [261] Мах экспериментально подтвердил эффект Доплера и тем самым положил конец спорам о правильности теории, а также заложил основы для обнаружения оптического эффекта Доплера.

§138. В 1848 году Эдвард Рош рассчитал предел, который описывает радиус круговой орбиты спутника, обращающегося вокруг небесного тела, на котором приливные силы, вызванные гравитацией центрального тела, равны силам самогравитации спутника. [262] Рош применил расчет для жидких спутников, и на основании этого расчёта он предположил, что кольца Сатурна состоят из множества независимо обращающихся небольших частиц.

§139. Михаил Васильевич Остроградский (1850) опубликовал представленный им двумя годами ранее мемуар, в котором распространил принцип Гамильтона на случай систем с нестационарными голономными96 связями, показав что и в более общем случае, когда связи и силовая функция содержат время (что не было рассмотрено Гамильтоном и Якоби), уравнения движения также могут быть преобразованы в гамильтонову форму (после чего распространилось название «принцип Гамильтона – Остроградского»). [263,264]. Остроградский доказал независимо от Гамильтона и Якоби, что задача определения интегралов канонических уравнений эквивалентна нахождению полного интеграла некоторого дифференциального уравнения в частных производных. Все искомые интегралы канонических уравнений можно найти дифференцированием полного интеграла уравнения в частных производных97. В 1901 году Гавриил Константинович Суслов и Петр Васильевич Воронец независимо обобщили принцип Гамильтона – Остроградского на случай неголономных систем. [265,266].

§140. Ипполит Физо (1851) провел эксперимент для измерения относительных скоростей света в движущейся воде с использованием специального устройства интерферометра для измерения влияния движения среды на скорость света. [267] Физо обнаружил эффект затягивания, но величина эффекта, который он наблюдал, была намного ниже, чем ожидалось. Когда он повторил эксперимент с воздухом вместо воды, он не заметил никакого эффекта. [268] Эксперимент Физо заставил физиков признать эмпирическую обоснованность старой, теоретически неудовлетворительной теории Френеля (1819), которая была использована для объяснения эксперимента Араго 1810 года, а именно, что среда, движущаяся через неподвижный эфир, тащит за собой свет, распространяющийся через нее только с долей скорости среды, с коэффициентом сопротивления [преломления]. [269] Френель предположил, что эфира вблизи тел вообще нет, а только в самих телах. Джордж Габриэль Стокс (1845), напротив, предположил, что эфир в телах и рядом с ними полностью переносится. [270] Результат Физо говорил за частичное увлечение эфира в смысле Френеля и мог быть согласован с теорией Стокса только с помощью громоздких вспомогательных гипотез. В 1887 году Лоренц опубликовал заметку, в которой показал, что вспомогательные гипотезы Стокса противоречат сами себе. [271] Поэтому предпочтение было отдано в итоге через модифицированную теорию Лоренца-Френеля. В 1895 году Хендрик Лоренц предсказал существование дополнительного члена уравнения из-за дисперсии. Позже выяснилось, что коэффициент сопротивления Френеля действительно соответствует формуле сложения релятивистских скоростей98.

§141. Уильям Томсон, лорд Кельвин (1851) выдвинул идею о тепловой смерти Вселенной вследствие найденных и интерпретированных законов термодинамики. Хотя Карно, Джоуль и Клаузиус высказывали мнения о потере механической энергии, Томсон, основываясь на недавних экспериментах динамической теории тепла, указал: «тепло не вещество, но динамичная форма механического воздействия, мы понимаем, что должны быть эквиваленты между механической работой и теплом, между причиной и следствием». [272] В 1852 году Томсон в работе «Об универсальной тенденции в природе к диссипации механической энергии» изложил зачатки второго закона термодинамики, обобщенного с точки зрения, что механическое движение и энергия, используемая для создания этого движения, естественно, имеют тенденцию рассеиваться или стекать. [273] Положение «принципа рассеяния энергии» имеет следствие, что спустя конечный промежуток времени Земля очутится в состоянии, непригодном для обитания человека. Это была первая формулировка идей о «тепловой смерти», пока только Земли. Ещё до создания современной космологии были сделаны многочисленные попытки опровергнуть вывод о тепловой смерти Вселенной. В последующие годы Герман фон Гельмгольц (1854) поддержал идею Томсона о тепловой смерти Вселенной, которую Уильям Джон Маккорн Ранкин (1855) обозначил «концом всех физических явлений». [274,275]

§142. Майкл Фарадей (1852) предположил, что поле – это область пространства, сплошь пронизанная силовыми линиями. [276] Силы взаимодействия токов, введённые Ампером, считались дальнодействующими. Фарадей не признавал существования в природе пустоты, даже заполненной эфиром. Мир полностью заполнен проницаемой материей, и влияние каждой материальной частицы близкодейственно, то есть распространяется на всё пространство, непрерывно передающиеся от каждой точки к соседним точкам с конечной скоростью99. До Фарадея электрические силы понимались как взаимодействие зарядов на расстоянии – где нет зарядов, нет и сил. Фарадей изменил эту схему: заряд создаёт протяжённое электрическое поле, и уже с ним взаимодействует другой заряд, дальнодействия на расстоянии нет. С магнитным полем положение оказалось более сложным – оно не является центральным, и именно для определения направления магнитных сил в каждой точке Фарадей ввёл понятие силовых линий. Из полученных результатов Фарадей сделал вывод, «что сама обычная индукция во всех случаях является действием смежных частиц и что электрическое действие на расстоянии (то есть обыкновенное индуктивное действие) происходит только благодаря влиянию промежуточной материи».

§143. Джеймс Клерк Максвелл (1855) в своей статье «О фарадеевых силовых линиях» впервые записал в дифференциальной форме систему уравнений электродинамики, которая описывала все известные к тому времени экспериментальные данные, но не позволяла связать между собой заряды и токи и предсказать электромагнитные волны. [277] В работе «О физических силовых линиях», состоящей из четырёх частей, Максвелл (1861—1862) обобщил закон Ампера и ввел ток смещения, чтобы связать токи и заряды уравнением непрерывности, которое уже было известно для других физических величин, завершив формулировку полной системы уравнений электродинамики. [278] В статье «Динамическая теория электромагнитного поля» Максвелл (1864) на основании сформулированной ранее системы уравнений из 20 скалярных уравнений для 20 скалярных неизвестных, впервые сформулировал понятие электромагнитного поля как физической реальности, имеющей собственную энергию и конечное время распространения, определяющее запаздывающий характер электромагнитного взаимодействия. [279] В 1880 году Оливер Хевисайд, исследуя скин-эффект в телеграфных линиях передачи, переписал результаты Максвелла из их первоначальной формы в виде, выраженном в терминах современного векторного анализа, таким образом сведя систему из 20 уравнений с 12 переменными к 4 дифференциальным уравнениям, ныне известным как уравнения Максвелла. [280] Уравнения Максвелла описывают природу неподвижных и движущихся заряженных частиц и магнитных диполей, и отношения между ними, а именно электромагнитную индукцию100.

§144. Предположение о наличии объекта между Марсом и Юпитером актуализировалось после открытия Уильямом Гершелем Урана в 1781 году, орбита которого почти полностью соответствовала правилу Тициуса-Боде. После открытия Джузеппе Пиацци (1801) Цереры, а затем Генрихом Ольберсом (1802) Паллады, Уильям Гершель (1802) предложил поместить их в отдельную категорию, названную «астероидами». После того, как к 1807 году дальнейшие исследования выявили два новых объекта в регионе – Юнону и Весту, Александр фон Гумбольдт (1851) заметил и регулярное появление падающих звезд, которые, вероятно, образуют часть Пояса астероидов, пересекающих орбиту Земли и движущихся с планетарной скоростью. [281] Роберт Джеймс Манн (1858) указал, что орбиты астероидов расположены в широком поясе пространства. [282]

§145. Под руководством Фридриха Аргеландера (50-60-е года XIX века) в Боннской обсерватории составлен звёздный каталог, ныне известный как Боннское обозрение (Bonner Durchmusterung, BD). [283] В каталог попало 325037 звёзд101 яркости до 9.5 звёздной величины (с точностью до 0,3 звездной величины), расположенных на склонениях от -2° до 90° с точностью до 0,1». Для составления каталога использовался трехдюймовый рефрактор Боннской обсерватории. Для картирования всю небесную сферу разделили на сферические пояса, параллельные небесному экватору, толщиной 1° по склонению. В 1886 году появилось так называемое Южное Боннское обозрение, выполненное помощником Аргеландера Эдуардом Шёнфельдом, использовавшим 6-дюймовый рефрактор Боннской обсерватории. [284] Это обозрение расширило каталог до -23° и добавило к нему 137834 звезды. Дальнейшее расширение каталога продолжалось за пределами Германии. Следующее обозрение было выпущено в 1908 году в Кордовской астрономической обсерватории, Аргентина. Кордобское обозрение, дополнившее Боннское обозрение до южного полюса и увеличившее число объектов каталога до 613959 звёзд. [285] К Боннскому обозрению также относят фотографический Кейпский (Капский, Кейптаунский) обзор 1896—1900 годов). [286] Фотографированием неба занимались в Кейптаунской обсерватории под руководством Дэйвида Гилла. Фотопластинки отправлялись на изучение Якобусу Каптейну в Гронинген. Каталог включал в себя 454875 звёзд Южного полушария, полный до 9,5-й звёздной величины и содержащий звезды до 12-й величины от склонения -19° до южного полюса мира. Полная версия каталога со всеми дополнениями содержит около 1,5 миллионов звёзд до 10 звёздной величины.

§146. После целого ряда физических открытий, накопленных к тому времени, которые мы возможно незаслуженно не рассмотрели, внимание Максвелла привлекла природа колец Сатурна, которые были открыты Галилео Галилеем в начале XVII века и долгое время оставались загадкой природы. Проанализировав математически различные варианты строения колец, Максвелл (1859) вывел, что подобная структура может быть устойчивой только в случае, если состоит из малых тел, не связанных между собой метеоритов, а устойчивость колец обеспечивается их притяжением к Сатурну и взаимным движением планеты и метеоритов. Исследовав распространение волн в таком кольце, Максвелл показал, что при определённых условиях метеориты не сталкиваются между собой, а для случая двух колец он определил, при каких соотношениях их радиусов наступает состояние неустойчивости. [287] Эти открытия легли в основу вышеуказанных исследований Максвелла по теории электромагнитного поля.

§147. В одной из формулировок закон излучения Густава Роберта Кирхгофа (1859) звучит: отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химической природы. [288] Закон Кирхгофа справедлив только для случаев теплового равновесия. Вместе с тем его часто применяют и для неравновесных систем, когда излучение не находится в равновесии с веществом, а предположение о термодинамическом равновесии между частицами излучающего вещества становится пригодным приближением. В качестве общеизвестного упоминается факт, что степень отклонения от закона Кирхгофа может служить мерой отличия излучения космических объектов от теплового. [289]

На страницу:
6 из 20