bannerbanner
Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData
Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData

Полная версия

Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
2 из 4

* распознавание типа действия на видео, которое може использоваться полицией или службами безопасности: Temporal Action Localization Task в датасете ActivityNet с вероятностью угадывания с 18% до 42.8% за 4 года;

* распознавание объектов на фото, которое может использоваться в автопилотах: MEAN AVERAGE PRECISION в датасете You Only Look Once (YOLO);

* распознавание людей по лицам, которые используется авторизации по лицу (банки, магазины, метро): Face Recognition Vendor Test (FRVT) в National Institute of Standards and Technology (NIST) с ошибкой до 0.22% за 3 года;

* понимание текста в датасете Stanford Question Answering Dataset (SQuAD) с 45% до 90.3% за полтора года (лучше человека);

* опрос по картинке на соревновании Visual Question Answering (VQA) Challenge в задаче Visual Commonsense Reasoning (VCR) Task с 68% до 95.4% для версии SQuAD v1.1 (лучше человека);

* рассуждения по тексту или картинке на соревновании Visual Question Answering (VQA) Challenge за 4.5 года с точностью с 55% до 76.4%;

* распознавание речи по датасету LibriSpeech в задаче Transcribe Speech – количество ошибок уменьшилось за четыре года без шумов 5.3%..1.4%, а с шумами 13.3%..2.6%;

* распознавание какому человеку принадлежит реч: 0,6% ошибок;

* предсказание структуры белка с 2016 года обогнала физически модели с точностью 40% и на 2020 год достигли точности 84%;

* решение проблем и доказательство теорем: с 2017 года имеет линейный тренд без прорывов;

Целесообразность применения машинного обучения используется там, где много данных, на которых их можно обучить. А это зачастую или корпорации, или иногда применение самих обученных нейронных сетей осуществляется как краевые вычисления (IoT).

Сейчас с Microsoft в непосредственной области ML и AI, и интеграции этих наработок в продукты работают более 7000 специалистов. На примере продуктов компании Microsoft посмотрим на внедрение ИИ в больших компаниях:

* 1995 – Помощник MS BOB;

* 1996 – Ассистент MS Office Clippy и корректор грамматики;

* 2002 – Распознавание рукописного ввода Windows XP;

* 2011 – Классификатор снимков в Windows Live Photo Gallery;

* 2013 – Помощник Contana;

* 2014 – Синхронный перевод в Skype;

* 2015 – Аутентификация с помощью видеокамеры Windows Hello;

* 2016 – Чат-боты и распознавание образов статистически лучше человека;

* 2017 – Распознавание речи статистически лучше человека;

* 2018 – Выполнение тестов статистически лучше человека.

Сама компания развивает AI в областях: консалтинг, образование, программные сервисы (SaaS), фреймворки, инструменты для разработчиков, программная (облака) и аппаратная (процессоры) инфраструктура.

Если же брать в общем индустрии, то применяться они могут для нахождения точек продаж (воронки), классификации звонков (предварительный разговор), выявления фрода, предиктивная аналитика (поломок).

Глубокое обучение, начавшееся как тренд в 2012 году, сейчас переходит в плато и начинает находить применение. Для применения ищутся способы определения, на основе каких признаков было принято конкретное решение, например, при отказе выдать кредит законодательство обязывает предоставлять клиенту причину отказа. Одновременно в компаниях или внедряются уже наработки в продукты, или отлаживаются для большего уровня интеграции.

Посмотрим на рост глобальных инвестиций корпораций и стартапов в AI:

2015 – 12 и 8 Mil.$ 2016 – 17 и 12 Mil.$ 2017 – 44 и 22 Mil.$ 2018 – 43 и 37 Mil.$ 2019 – 49 и 39 Mil.$ 2020 – 67 и 42 Mil.$

Посмотрим частный пример, на рост индустрии на примеров увеличения количества сервисов машинного перевода:

2017 – 7 2018 – 10 2019 – 21 2020 – 24

Теперь, собственно, настало поговорить о вакансиях. Количество вакансий с 2016 по 2020 год выросла 1.3..2.7 раз, при этом число вакансий от общего числа составляют от 0.2% до 2.4%:

США – 210% Канада – 270% Австралия – 210% Сингапур – 250% Германия – 220% Италия – 170% Франция – 160% Китай – 130%

В курсах по AI доля Machine Learning составляет 42%.

Если же говорить об рабочих местах и о смещении на технологические рабочие места. Часто, компании, которые автоматизируют рабочие места, заявляют, что сотрудники которые их занимали могут переквалифицироваться и начать управлять этими автоматизированными системами. Обычно, люди со стороны относятся к этому с недоверием, так как непонятно, зачем автоматизировать и потом оставляют тоже количество людей, ведь автоматизация подразумевает в их понятие автономность. Но, это не так, так как автоматизация подразумевает наличие огромного количества людей, разрабатывающих и обслуживающих эти системы. Так, в одной из крупнейших компаний России есть план, который подразумевает освобождение нескольких тысяч мест продавцов, кассиров и других операторов, но вместе с тем запланирован найм большего количества тысяч рабочих мест специалистов обслуживающих системы AI. Ожидается качественный и масштабируемый прирост показателей услуг, предоставляемых компанией, а большей степени отрытие новых ниш развития компании. Количество в среднем останется таким же, так как большой набор проектный (единичный), а отток – плановый (ежегодный). Но, конечно, продавцы и кассиры маловероятно, что переквалифицируются в разработчиков, аналитиков и учёных с сфере ИИ. Хотя, большими компаниями делаются попытки в этом направлении – создаются курсы и очное обучение на несколько месяцев для переквалификации сотрудников. Обычно, люди с умирающих профессий переквалифицируются в другие умирающие профессии, у которых умирание произойдёт с небольшим запозданием. Это связано с тем, что люди бегут с простых работ на работы чуть сложнее, чем были до этого, ожидая быструю и разовую переквалификацию. Например, продавцы могут переквалифицироваться в таксистов, где требуется чуть больше технических навыков, чем их прежняя работа, и автоматизация, чуть сложнее и чуть менее эффективна. Такая ситуация была всегда, и связана она с любой автоматизацией, не только компьютерной. Общей чертой профессий, подлежащих автоматизации является рентабельность, то есть они достаточно массовы и легко автоматизируются, чтобы это стало выгодным. Популярность профессии для перехода с умирающей и является, что она скоро станет массовой, а лёгкость переквалификации связана со стандартизацией. Так, курсы по переквалификации уже говорят, что есть алгоритм и он будет применён многократно, пока только на этапе переквалификации, а не на этапе постоянной работы. Отсюда вытекает следствия, что столь популярная профессия как Web программист с понятными навыками, понятными заданиями может быть автоматизирована. Не секрет, что в разработке формализован стиль кода, фреймворки, подходы, постановка задач. И действительно, современные готовые (предобученные) нейронные сети могут генерировать работающий программный код, но об этом позже в этой книге. Но, программисты, гораздо ближе к эффективной переквалификации, если он если они не занимаются простым кодированием. Но, только 2020, нейронные сети могут формировать только простой код на языке программирования, а насколько – в соответствующем разделе. Поэтому программисты разделяются на два лагеря – программисты пишущие типовой код, которым сложно адаптироваться, но которых это коснётся и программистов, которых могут переквалифицироваться, который понемногу будут вытеснять первая группа программистов, и которым, скорее всего интереснее и перспективнее это будет сделать. Правда тут не всё так однозначно, так с 2018 года, нейронные сети уже умеют проектировать другие специализированные нейронные сети с помощью технологии AutoML.

Что, касается самой профессии Data scines – это аналитик данных, который на основе понимания предметной области может с помощью статистических методов используя инструменты (языки, системы) получить предсказания. Более подробно о навыках:

* математическая статистика и теория вероятностей, чтобы мог выбрать статистические методы, где ML не нужен;

* алгоритмы ML: регрессия, классификация, кластеризация, порождения (генерации), сопоставление;

* программирование: аналитика на R, написание моделей на Python и подключение данных из Java+SQL (Hadoop, Hive, Spark, Pig), управление жизненным циклом модели (DevOps, SRE);

* мягки навыки: понимание предметной области (ориентация на бизнес результат), проектное управление (коммуникация для построения запуска модели), аналитика для проверки гипотез.

Пишем свою сеть

Для примера возьмём прописные числа от нуля до девяти, которые мы будет сопоставлять с печатными. Если прописные точно попадают в контур – то всё просто, нам нужно просто перебрать контура печатных и получить подходящий вариант. Такая задача не относится к задачам машинного обучения. Теперь усложним задачу – числа у нас не точно попадают под шаблон. Если прописные числа немного не вписываются в контур – мы просто находим какое–то отклонение. И тут возникает сложность при категоризации прописного числа на ноль и девятку, когда размер хвостика отделяет небрежное написание нуля от девятки. Другой момент в категоризации восьмёрки и девятки. Так, если кончик отгибается – это десятка, а если загибается и прикасается – то восьмёрка. Для решения подобной ситуации нужно разделить цифру на области и в зависимости и присвоить им разные коэффициенты. Так, соединение хвостика нижней части имеет очень высокое значение, нежели форма самих окружностей в классификации на восьмёрки и девятки. Определить помогут статистические данные по заранее данной выборке соответствия фигур восьмёркам и девяткам, где исследователь сможет определить, когда уже можно высчитать нижнее кольцо замкнутым и говорить о соответствии восьмёрке фигуры, а когда нет, говорить о соответствии девятке. Такой метод сортировки, основанный на выделении отдельных компонент, на различии которых и принимается решение о сортировке, называется методом главных компонент. Но мы можем программным способом разделить цифры на сектора и присвоить им коэффициенты.

Другой сложностью может быть то, что цифра может быть не в наблюдаемой области, а в произвольной, например, в углу. Для анализа самой цифры нам нужно переместить анализирующее окно в то место, где находится цифра. Для простоты пока будем полагать, что габариты анализирующего окна равны габаритам исследуемой цифры. Для решения этой задачи перед сетью ставят анализирующий слой, образующий карту нахождения цифры. Задача этого слоя определить местоположение цифры на картинке. Для простоты возьмём чёрное изображение на белом листе. Нам нужно пройтись анализатором цифры построчно по всему листку и определить местоположение. В качестве индикатора возьмём площадь чёрного цвета на индикаторе. После прохождения по листку бумаги и определения площади мы получим матрицу с цифрами площадей чёрного цвета. Где площадей чёрного цвета больше – в том месте цифра максимально вписалась в индикатор. Преобразование картинки в матрицу площадей называется операцией свёртки, а если это выполняет нейронный слой – свёрточный слой. Принцип работы был позаимствован у биологического зрительного нерва. Нейронные сети, в которых присутствует свёрточный слой (Conv Layers) называются свёрточными нейронными сетями (Convolutional Neural Network, CNN). Такие сети используют при распознавании изображения, а после при должном развитии их адаптировали для распознавания речи и текстов. Классически, CNN применяется для решения трёх задач при работе с изображениями:

* классификация изображений, например, фотографий собак и кошек по роду животных; * определение объекта на изображении, например, определение нахождения и положения пешехода при пилотировании беспилотным автомобилем; * сегментации изображения, например, определение на рентгенах контуров опухолей.

Если изображение находится в произвольном месте, или имеются другие изображения, то для определения потребуется несколько слоёв нейронной сети, и результатом будет являться также карта расположения цифры, но принятие решения о её нахождения нужно её идентифицировать. Таким образом, первый слой будет иметь количество нейронов отображающих карты, что по горизонтали и вертикали будет соответствовать ширине и высоте листка минус соответствующую ширину и высоту анализирующего экрана, делённую на шаг сдвига анализирующего окна. Размерность второго же слоя в нейронах равна размерности анализируемого окна, чтобы иметь возможность идентификации цифры. Если мы проведём связи от всех нейронов слоя поиска к слою анализирующего окна, то на выходе мы получим набор снимков влитых вместе. Следующий слой будет иметь размерность, равную количеству анализируемых элементов цифр. К примеру, цифру можно представить в виде не полностью закрашенной восьмёрки, тогда, закрашиваемых сегментов будет семь. Все нейроны свёрточного слоя будут связаны со всеми нейронами слоя анализа сегментов цифры. Задача нейрона этого слоя быть связанным с нейронами предыдущего, ответственными за данный сегмент и выдать результат наличия или отсутствия данного сегмента в цифре. Следующий слой имеет состоит из десяти нейронов, соответствующие цифрам от нуля до девяти. Всего его нейроны связаны с предыдущим слоем и активируются при получении сигналов от них. Так, нейрон, ответвленный за цифру один будет активироваться, если получит информацию, что два крайних правых сектора будут активны и не активны все остальные. Описанный алгоритм детектирования искомого изображения называется R–CNN (Region–based Convolutional Network) и использовался долгое время. Далее он был сменён Fast R–CNN, а ныне применяется YOLO (Real–Time Object Detection) из–за большего качества и скорости работы.

На выходе мы получим активацию того выходного нейрона, который соответствует определённой цифре. Он это делает на основе данных, получаемых от нейронов с предыдущего слоя, ответственных за сектора цифры, а именно от каких нейронов пришли сигналы, а от каких нет. Обозначим приходящие сигналы от нейронов по связям за ноль, то есть сектор не закрашен, а единице будет соответствовать случай, когда сектор закрашен. Тогда, вес у связей от правых секторов – положительный, что даст единицу, а у остальных – отрицательный, что не даст получить на выходе единицу если ещё какой–то сектор активирован. На выходе нейрона стоит нормализатор, который отвечает за принятие решения. Ему необходимо решить, на основе входных данных и весов, отдавать единицу или ноль. Для этого он перемножает входные данные на веса, складывает их, и по пороговому значению выдаёт единицу или ноль. Этот нормализатор нужен для того, чтобы после суммирования информации приходящей с нейронов, он передал на следующий слой нейронов логическую информацию, степень важности которой будет определяться весами на принимающем нейроне. Для этого используются функции, которые преобразуют весь диапазон уровней входных сигналов в диапазон от нуля до единицы. Такая функция носит название функций активации и подбирается для всей нейронной сети. Есть множества функций, которые всё, что меньше единицы считают нулём. Сами веса не кодируются, а подбираются во время обучения. Обучение бывает с учителем (supervised) и без (ansupervised) и они пригодны для разного класса задач. При обучении без учителя (автоматические кодировщики и порождающие сети) мы даём данные на вход нейронов сети и ожидаем, когда она сама найдёт какие-нибудь закономерности, при этом данные не размечены (не имеют каких–то меток с указанием результата), что позволяет выявить ранее неизвестные особенности, сходства и различия, и классифицирует по ещё ненайденным признакам, но как это будет происходить, предсказать сложно. Самые распространённые типы задач при обучении с учителем: классификация (имеющееся данные нужно отнести к одной из групп) и регрессия (к указанной группе нужно сгенерировать данные). Такие сети применяют в маркетинге. Задачей без учителя являются задача кластеризации, в которую входит определение в наборе данных группировки этих данных по каким-то ещё не выявленным признакам. Задача кластеризации используются в рекомендательных системах, когда нужно выявить группу товаров, которые нравится определённым людей со схожими параметрами. Получив группу товаров и параметры людей, можно новым посетителям на основании этих параметров рекомендовать подходящую им группу (кластер) товаров. Сама кластеризация многомерна, а для отображения на графике применяют метод понижения размерности, который хоть и утрачивает информацию, но позволяет дать какое-то наглядное визуальное представление с заметными границами и точек сгруппированных внутри полигонов (кластеров). Кластеризация нужна для выявления групп, которым можно предложить персонализированные (таргетированные) рекомендации, а мы рассмотрим в книге кластеризацию слов в языке (эмбеддинги). Методы кластеризации: k-Means кластеризации по точному числу кластеров с единым выраженным центром, Density-Based Spatial Clustering of Applications with Noise (DBSCAN) кластеризации по уровню схожести в кластере, Agglomerative clustering для вложенной кластеризации. Все их поддерживает библиотека Scikit-learn. Пример алгоритмов без учителя: Apriori, Euclat, FP–growth. Для большинства задач нам нужно получить классификацию по заданным группам, для чего мы на вход подаём обучающую выборку с размеченными данными, содержащими метки о правильном решении (например, классификации), и стараемся добиться совпадения с этой тестовой выборкой. Также может быть с подкреплением (reinforcement), при котором сеть пытается найти наилучшее решение на основе стимулов, например, при игре добиться превосходства перед соперником, в роботе пылесосе всосать в себя как можно больше мусора, в самоуправляемых машинах доставить как можно быстрее, в торгах на биржах получить максимальную выгоду, при управлении процессами предприятия – достигнуть максимальной эффективности. При этом закладываются правила, например, пылесосу не нужно загонять кота на шкаф во имя чистоты, машина не должна нарушать правила чтобы улучшить результат, на бирже нельзя излишне рисковать без статистики и тому подобное. Это может быть тоже использовано при обучении, например в сетях Deep Q–Network (DQN). Рассмотрение такой стратегии обучения как обучение с подкреплением, пока, отложим на потом. При обучении с учителем требуется гораздо меньше попыток подобрать вес, но всё же это от нескольких сотен до десятков тысяч, при этом сама сеть содержит огромное количество связей. Для того чтобы найти веса, мы подбираем их направленным уточнением. С каждым проходом мы уменьшаем ошибку, и когда точность нас устроила, мы можем подавать тестовую выборку для валидации качества обучения (сеть могла плохо обучиться или переобучиться), после этого можно использовать сеть. В нашем примере, это могут быть немного искривлённые цифры, но благодаря тому, что мы выделяем области, это не сильно сказывается на точности.

При обучении нейрона с учителем мы подаём обучающие сигналы и получаем на выходе результаты. Но при каждом сигнале, входном и выходном, мы получаем результат о степени ошибки в предсказании. Когда мы прошли все обучающие сигналы, мы получили набор (вектор) ошибок, который может быть представлен в виде функции ошибок. Эта функция ошибок зависит от входных параметров (весов) и нам нужно найти веса, при которых эта функция ошибок становится минимальной. Для определения этих весов применяется алгоритм Градиентного спуска, суть которого заключается в постепенном движении к локальному минимуму, а направление движения определяется производной от этой функции и функции активации. В качестве функции активации обычно выбирают сигмойду для обычных сетей или усечённую ReLU для глубоких сетей. Сигмойда на выходе даёт диапазон от нуля до единицы всегда. Усечённая ReLU всё же позволяет при очень больших числах (очень важной информации) на входе передать больше единицы на выход, и тем самым повлиять на слои, идущие после непосредственно следующих. К примеру, точка над чёрточкой отделяет букву L от буквы i, а информация одного пикселя влияет на принятия решения на выходе, поэтому важно не потерять этот признак и передать его на последний уровень. Разновидностей функций активации не так много – их ограничивает требование к простоте обучения, когда требуется взять производную. Так сигмойда f после произвольно превращается в f(1–f), что эффективно. С Leaky ReLu (усечённая ReLu c утечкой) ещё проще, так как она при "x < 0" принимает значение 0, то её проводная на этом участке тоже равна 0, а при "x >=0" она принимает 0,01*x, что при производной будет 0,01, а при x > 1 принимает 1+0,01*x, что для производной даёт 0,01. Вычисление тут вообще не требуется, поэтому обучение происходит намного быстрее, обычно, в пять раз. До сигмойды ещё использовался тангенс, но, он был вытеснен сигмойдой.

Так как на вход функции активации мы подаём сумму произведений сигналов на их веса, то зачастую, нам нужен другой пороговый уровень, отличный от 0,5. Мы можем сместить его на константу, прибавляя её к сумме на входе в функцию активации, используя нейрон смещения для её запоминания. Он не имеет входов и выдаёт всегда единицу, а само смещение задаётся весом связи с ним. Но, для многонейронных сетей он не требуется, так как сами веса предыдущим слоями подгоняются такого размера (меньшими или отрицательными), чтобы использовать стандартный пороговый уровень – это даёт стандартизацию, но требует большего количества нейронов.

При обучении нейрона нам известна ошибка самой сети, то есть на входных нейронах. На их основе можно рассчитать ошибку в предыдущем слое и так далее до входных – что носит название метода обратного распространения ошибки.

Сам же процесс обучения можно разделить на этапы: инициализация, само обучение и предсказание.

Если же у нас цифра может быть различного размера, то применяется pooling слои, которые масштабируют изображение в меньшую сторону. По какому алгоритму будет вычисляться то, что будет записано при объединении, зависит от алгоритма, обычно это функция “max” для алгоритма «max pooling» или «avg» (среднеквадратичные значение соседних ячеек матрицы) – average pooling.

У нас уже появилось несколько слоёв. Но в применяемых на практике нейронных сетях их может быть очень много. Сети с количеством слоёв больше четырёх слоёв принято называть глубокими нейронными сетями (DML, Deep ML). Их может быть очень много, что приводит к сложности. С улучшением архитектур, позволяющих уменьшить или обойти такие ограничения, появляются сети с сотнями слоёв. Например, блоки Residual Connect, позволяющие сохранить градиенты и ставшие стандартом для глубоких сетей, появились впервые в ResNet с количеством слоёв 152 штуки и это далеко не самая глубокая сеть. Но, как вы уже заметили, количество слоёв не берётся, по принципу, чем больше, тем лучше, а прототипируется. Излишнее количество ухудшает качество за счёт затухания, если для этого не применять определённые решения, такие как проброс данных с последующим суммированием. Примерами архитектур нейронных сетей могут быть ResNeXt, SENet, DenseNet, Inception–Res Net–V2, Inception–V4, Xception, NASNet, MobileNet V2, Shuffle Net и Squeeze Net. Большинство из этих сетей предназначены для анализа изображений и именно изображения, зачастую, содержат наибольшее количество деталей, и на эти сети возлагается наибольшее количество операций, чем и обуславливается их глубина. Одну из подобных архитектур мы рассмотрим при создании сети классификации цифр – LeNet–5, созданную в 1998.

Если же нам нужно не просто распознать цифру или букву, а их последовательность, заложенный в них смысл, то нам нужна связь между ними. Для этого нейронная сеть после анализа первой буквы отравляет на свой вход вместе со следующей буквой результат анализа текущей. Это можно сравнить с динамической памятью, а сеть реализующую такой принцип, называют рекуррентной (RNN). Примеры таких сетей (с обратными связями): сеть Кохонена, сеть Хопфилда, ART– модели. Рекуррентные сети анализируют текст, речь, видео информацию, производят перевод с одного языка на другой, генерируют текстовое описание к изображениям, генерируют речь (WaveNet MoL, Tacotron 2), категоризируют тексты по содержанию (принадлежность к спаму). Основным направлением, в котором работают исследователи в попытке улучшить в подобных сетях является определение принципа, по которому сеть будет решать, какую, на сколько долго и на сколько сильно будет сеть учитывать предыдущую информацию в будущем. Сети, приминающие специализированные инструменты по сохранению информации, получили название LSTM (Long–short term memory).

Не все комбинации удачны, какие то позволяют решать только узкие задачи. С ростом сложности, всё меньший процент возможных архитектур является удачным, и носит своё названия.

В общем, имеются сети принципиально отличающиеся устройством и принципами:

* сети прямого распространения;

* свёрточные нейронные сети ;

* рекуррентные нейронные сети;

* автоматический кодировщик (классический, разряженный, вариационный, шумоподавляющий) ;

На страницу:
2 из 4