bannerbanner
Вирусы: Скорее друзья, чем враги
Вирусы: Скорее друзья, чем враги

Полная версия

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
3 из 5

До недавнего времени считалось само собой разумеющимся, что все вирусы малы по размеру и представляют собой наночастицы, что их можно обнаружить только при помощи электронного микроскопа, их невозможно отфильтровать, они имеют ДНК или РНК, которая часто находится в симметричных белковых структурах, например икосаэдрах; они самостоятельно не реплицируются и являются паразитами, для репликации им нужны клетки, они не способны осуществлять синтез белка, нуждаются в энергии, производимой клетками. Вирусы по большей части локализуются в определенных клетках-хозяевах, в ряде случаев имеют оболочку, заимствованную у клетки-хозяина, на поверхности которой имеются рецепторы для связывания со специфической клеткой-хозяином. Это патогены, возбудители заболеваний, которые вредят клеткам-хозяевам, злоупотребляют их «гостеприимством» ради собственного потомства, маскируются и используют принцип троянского коня. Короче говоря, вирусы – это враги.

В последние годы мы выяснили, что практически все из вышеперечисленного не соответствует действительности. По размеру вирусы бывают больше многих бактерий. Вирусы и сами могут стать хозяевами для других вирусов, а по размеру могут намного превосходить наночастицы или быть намного меньше их, и на самом деле они не всегда представляют собой частицы! По размеру вирусы могут отличаться в 10 000 раз – очень широкий диапазон; кроме того, у них весьма разнообразная морфология, около десятка разных типов геномов и множество совершенно разных стратегий репликации. Число генов у вируса может составлять от 0 (!) до 2500. Для сравнения: у человека 20 000 генов, всего в 10 раз больше. «Ноль генов» характерен для вироидов, хотя они, как правило, не считаются вирусами. Различаются вирусы, которые содержат нуклеиновые кислоты, но не имеют белковой оболочки или (наоборот) имеют только белковую оболочку при отсутствии нуклеиновых кислот. Последние являются прионами, которые зачастую не считаются вирусами, но я бы все же отнесла их к вирусам. Существуют вирусы только с посторонними генами, без собственных, например вирусы экзотических растений, поли-ДНК-вирусы (PDV) – факт, который может нам кое-что рассказать об эволюции. Кроме того, есть эндогенные вирусы, никогда не покидающие своих клеток-хозяев, а также рудиментарные вирусы, «прыгающие» в наших геномах. Эти два типа вирусов не имеют оболочки, поэтому являются «запертыми», «заблокированными» вирусами, не способными перемещаться из одной клетки в другую.

Вирусы – мобильные (генетические) элементы – полезно ли это определение? Да, вирусам нужна энергия, но необязательно клетки-хозяина. Подойдет химическая энергия, а она вырабатывается «черными курильщиками», в окружении которых возникла жизнь и куда не проникает солнечный свет. Вирусам нужно прибежище, компартменты, а еще глина, то есть минеральные вещества, как ускоряющие процесс факторы – тот самый «маленький теплый пруд» Дарвина, – чтобы концентрация компонентов была высокой. Первым такого рода аккумулированием могли быть липидные мешочки. Тогда возникает вопрос: был ли это ранний вирус или ранняя клетка? Первоначально не было резкого разграничения между вирусами и клетками, и, скорее всего, они по совокупности образуют континуум. Недавно обнаруженные гигантские вирусы разрушили все ограничения, поскольку они почти бактерии и у них даже есть признак, который, как считается, бывает только у бактерий: компоненты для синтеза белка. А способность синтезировать белок часто используется для определения жизни. Таким образом, эти «почти бактерии» – переходная форма между вирусами и бактериями, между живым и неживым. Обнаружение гигантских вирусов коренным образом изменило наше представление о вирусах и способствовало тому, что мы стали считать вирусы более «живыми», чем представлялось ранее. Минималистичное определение вирусов предусматривает и их неспособность синтезировать белок, что является одним из признаков жизни. Однако гигантские вирусы все-таки «почти» могут синтезировать белок!

Вирусы обнаружены везде, где есть жизнь. Вирусы способны захватывать и доставлять гены, они могут мутировать, рекомбинировать, вставлять, удалять и смешивать гены. Их репликация ненадежна и поэтому представляет нечто новое для вируса и клетки-хозяина. Онкогенные вирусы способны извлекать гены из клетки и заставлять их мутировать в процессе репликации, что может повысить их онкогенность. Но истинно и прямо противоположное: они могут доставлять гены в клетку, придавая им новые свойства, в ряде случаев – полезные, в ряде случаев – вредные. Они способны доставить онкогены в клетку или индуцировать рак, а могут доставить гены для лечения рака. В клетку попадает больше генов, чем из нее выводится. Вирусы не могут спровоцировать «войну», «мериться силами» или вести «гонку вооружений», и столь нелестные описания способностей вирусов не вполне корректны. Вирусы «играют в пинг-понг» со своей клеткой-хозяином. Горизонтальный перенос генов между микроорганизмами и всеми прочими живыми хозяевами привел к образованию сложных геномов. Вот так наш геном и стал очень интересной комбинацией других весьма разнообразных микроорганизмов и других генов. Каждый микроорганизм – комбинация генов, полученных от большого количества других микроорганизмов, чаще всего вирусов. Вирусы, без сомнения, имеют самый большой набор генов, самое большое на Земле пространство последовательностей, значительная часть которого не используется. Вирусы характеризуются бóльшим, чем клетки, разнообразием генов, что подтверждает мнение, что вирусы появились на Земле раньше клеток (более подробно об этом далее).

Как давно мы знаем о вирусах? Давайте совершим экскурс в прошлое. Тридцать пять лет назад ВИЧ вторгся в человеческую популяцию, и на данный момент от него погибло более 37 млн человек. Сто лет назад вирус гриппа во время Первой мировой войны унес жизни почти 100 млн человек. Корь, которую конкистадоры принесли в Мексику из Европы, привела к гибели индейцев майя. В Средние века бактерия чумы уничтожила треть населения Европы, около 25 млн человек. За 600 лет до этого, в 542 г., от чумы Юстиниана погибло все население Рима. Заболевание приняло характер пандемии и охватило все Средиземноморье, вплоть до Константинополя. На пике пандемии ежедневно умирали 6000 человек. Фукидид описывал неизвестную болезнь, поразившую население Афин во время Пелопоннесской войны (около 400 г. до н. э.). Эта болезнь могла быть вызвана вирусом Эбола, кори, оспы или иными вирусами, или бактерией pesti. 3500 лет назад египетский фараон, видимо, страдал полиомиелитом, если судить по изображению человека с парализованными ногами на саркофаге. Ретровирусоподобные элементы присутствовали у неандертальцев, которые жили 250 000–300 000 лет назад, после чего неандертальцы вымерли. А потом наступает провал в нашем понимании истории развития жизни на Земле. Большое удивление вызвало открытие ВИЧ-подобного вируса у кроликов, а именно кроличьего эндогенного лентивируса типа K (RELIK), возраст которого составляет 12 млн лет.

Возраст другого ВИЧ-подобного вируса, выявленного у лемуров (родственников обезьян) на острове Мадагаскар, может составлять 4,2 млн лет. Никто не ожидал, что ВИЧ-подобные вирусы могут существовать так долго и даже передаваться по наследству.

Последние 10 лет в Лондоне и Принстонском университете одним из самых актуальных направлений исследований является новая область науки – палеовирусология. Последовательности генов вируса Эбола, возраст которого составляет 50 млн лет, были обнаружены в геномах свиней, обезьян и летучих мышей, а в геноме человека, но не лошадей выявлены последовательности генов борнавируса. Однако борнавирус вызывает заболевание только у лошадей, но не у человека. Таким образом, эндогенные последовательности и их продукты защищают организм от соответствующих вирусных заболеваний. Эти РНК-содержащие вирусы не должны в принципе интегрироваться в ДНК, но они это делают через «незаконные» механизмы, предусматривающие использование клеточно-молекулярных процессов, в частности чужеродной обратной транскриптазы. Даже плацентой мы обязаны родственникам ВИЧ, эндогенному ретровирусу человека (HERV-W), которому почти 30 млн лет. Возраст эндогенных ретровирусов человека, которые можно найти в геноме человека, составляет 35–100 млн лет. Некоторые из них относятся к интактным вирусам, которые могут формировать частицы, хотя, как правило, они уже не являются инфекционными. Эндогенные вирусы, вероятно, гораздо старше, чем мы представляем, поскольку они не рассматриваются как вирусы. Динозавр, живший 15 млн лет назад и выставленный в Музее естествознания в Берлине, страдал вирусной инфекцией, индуцированной osteodystrophy deformans – это один из парамиксовирусов, аналогичный вирусу кори и приводящий к деформации костей. Это заболевание до сих пор существует и называется синдромом Педжета.

Если углубиться в историю существования жизни на Земле на 200 млн лет назад, можно увидеть отпечатки вирусов, но на этом рубеже наше путешествие в прошлое заканчивается. Вирусная информация в силу мутации исчезает в генетическом «фоновом шуме». Найденные остатки древних эндогенных ретровирусов являются подтверждением наличия вируса. Недавно обнаруженная рыба целакант, существовавшая примерно 300 млн лет и считавшаяся вымершей, характеризуется удивительно стабильной генетикой и содержит последовательности древних ретровирусов.

Вместе с тем есть процессы, которые дают ключ к пониманию даже более ранних вирусов. Гигантские вирусы можно обнаружить не только у современных амеб, но и в специализированных иммунных клетках многоклеточных организмов – макрофагах – две линии, которые разошлись 800 млн лет назад и стали развиваться независимо друг от друга, и считается, что они были инфицированы до разделения. Найти дополнительные свидетельства за пределами 800 млн лет почти невозможно. И все же остается неохваченным большой временной период до начала жизни на Земле, примерно 3,8 млрд лет назад. Вирусы, вероятно, принадлежат к самым древним известным биологическим ископаемым. Реальное удивление вызвали вироиды, которые представляют собой вирусоподобные структуры и существуют до сих пор – не только сами по себе, но и в качестве рибозимов или структуры, родственной кольцевым РНК во всех человеческих клетках. Они восходят ко времени, когда еще не существовало генетического кода, – вероятно, 3,5 млрд лет назад. В одной научной публикации я попыталась реконструировать эволюцию жизни на Земле, основываясь на современных вирусах. Статья называлась «Какие современные вирусы могут рассказать нам об эволюции?», а редактор на всякий случай добавил примечание – «личное мнение»! (Archives of Virology, 2013).

Когда впервые секвенировали геном человека и эта информация была опубликована 15 лет назад, Frankfurter Allgemeine Zeitung (FAZ) напечатала на всю страницу всего четыре буквы – A, T, G и C, алфавит жизни, без интервалов, без слов, без предложений, без параграфов. За эту страницу газету удостоили премии. Напечатанное на ней совершенно точно отражает наши знания о генах: только буквы! Практически все остальное мы пока не понимаем. А потом начинается «текстовой анализ». Что означают эти буквы? В геноме человека примерно 3,2 млрд таких букв, что соответствует 20 000 генов, и тем не менее лишь 2 % общего числа генов закодировано. А для чего предназначены остальные, то есть большинство букв? Это тоже генетическая информация, или это часто упоминаемая «мусорная ДНК», или что-то другое? Хорошо, выдам секрет, что касается «остальных»: по большей части речь идет об информации, касающейся регуляции экспрессии генов. В ближайшие как минимум 50 лет ученые будут заняты осознанием этой информацией во всех деталях. Этот проект известен как ENCODE – «Энциклопедия элементов ДНК».

Нужно помнить несколько цифр: у вирусов, в частности у ВИЧ, – 10 генов, у фагов – 70, у бактерий – 300, у человека – 20 000–22 000, у банана – 32 000. Это что же, у банана больше, чем у человека? Как ни странно, да! И все же бананы не умнее нас. Это неоднократно называлось парадоксом: размер генома и число генов никак не соотносятся со сложностью того или иного вида. У человека не самое большое число генов, но у него самые длинные гены, и самое главное, эти гены способны лучше рекомбинироваться (путем сплайсинга, о чем пойдет речь в следующей главе) для повышения их общей сложности, превосходя в этом отношении все прочие известные виды. И наконец, один ген какого-либо вируса состоит примерно из 1000 нуклеотидов.

Перед тем как пойти дальше, читателю нужно выучить два слова или по крайней мере их аббревиатуры: ДНК и РНК. Их можно просто запомнить. И еще немного дополнительной информации: ДНК и РНК представляют собой крупные молекулы, которые являются носителями генетической информации, организованной в такие структуры, как гены. Первичная генетическая информация обычно закодирована в ДНК, и только вирусы, помимо прочего, могут использовать в качестве первичной генетической информации РНК и даже комбинацию ДНК и РНК. ДНК называют молекулой жизни. Она известна всем как двойная спираль, которая напоминает винтовую лестницу с двумя перилами (цепями), соединенными горизонтальными брусками как ступеньками (расположенные друг над другом основания). В 1953 г. эту структуру открыли Джеймс Уотсон и Фрэнсис Крик, тогда еще молодые амбициозные и авантюристически настроенные ученые из Кембриджа (Великобритания), один из которых «никогда не отличался скромностью» – по крайней мере именно так Уотсон характеризует Крика в своей знаменитой книге «Двойная спираль»[4]. Они хотели получить Нобелевскую премию, и это им удалось. Кроме того, важная информация поступила от Розалинд Франклин, которая провела рентгеновский дифракционный анализ и получила структурные данные, которые попыталась скрыть. Действительно ли она сказала Джеймсу Уотсону и Фрэнсису Крику, что у них неправильная модель, что все должно быть наоборот? Уотсон в своей знаменитой книге рассказал, как было сделано это открытие. Новая театральная пьеса «Фотография 51», связанная со снимком Франклин, – детективная история американского драматурга Анны Зиглер о том, как рентгеновский снимок Розалинд Франклин поспособствовал открытию, а сама Розалинд даже и не подозревала о своем вкладе. Как это ни печально, но она умерла молодой от рака, развившегося у нее вследствие экспериментов с рентгеновским излучением. Гораздо реже упоминается руководитель кафедры, где работала Франклин, – Морис Уилкинс, которого она не признавала, но который вместе с Джеймсом Уотсоном и Фрэнсисом Криком стал лауреатом Нобелевской премии. Швейцарский коллега великодушно предоставил ему большой объем чистой ДНК. Уилкинс использовал его в качестве исходного материала для кристаллизации. Позднее он привлек внимание в связи со своим возможным участием в коммунистическом движении. В настоящее время имя этого ученого известно не очень широко.

ДНК – двухцепочечная спираль, в то время как РНК – одноцепочечная, более гибкая спираль, похожая на веревку; она легче претерпевает изменения и имеет большое значение для появления новых нуклеотидных последовательностей у вирусов. Крик сформулировал «основную догму молекулярной биологии» – «от ДНК к РНК и белку», объясняющую поток генетической информации внутри клетки. По мнению некоторых, Крик не отличался догматизмом, но его имя оказалось связанным с догмой. С точки зрения молекулярных биологов, ДНК была доминантой на протяжении полувека, но в настоящее время ее догоняет по значимости РНК. С точки зрения эволюции РНК предшествовала ДНК, поэтому прямо противоположная догма тоже возможна: и РНК может превратиться в ДНК. Это мы почерпнули у вирусов. Поэтому, дорогой читатель, потребность в молекулярной биологии практически отпала. Многие детали можно опустить, а некоторые приводятся в глоссарии.

Матрос и сплеснивание

Во время плавания по Балтийскому морю на трехмачтовом круизном судне «Лили Марлен» однажды утром меня удивил один матрос, сделав подарок: сращенную веревку. Он соединил две веревки, срастив их концы (в биологии используется слово «сплайсинг»), – получилось наглядное пособие для студентов, которым я читаю лекции по вирусологии. По словам матроса, для сращивания требуются определенные навыки, но это занятие скрашивало утомительные ночные вахты. В книге «Сплесень и узлы» описывается, как это используется в мореходстве. Хорошо было бы иметь книгу с таким же названием в молекулярной биологии. Сращивание – это своего рода противоположность узлу. Только когда концы веревки правильно сращены, моряк может быстро и беспрепятственно проверить все связанные части, протянуть веревки через шкивы и поднять паруса; при наличии узлов этого не удалось бы сделать. Такой же принцип работает и для молекулярного мира. Двухцепочечная ДНК транскрибируется в одноцепочечную РНК – гибкую копию ДНК, имеющую жесткую структуру. РНК можно укорачивать, как веревку, путем сплайсинга: веревка разрезается, какой-нибудь кусочек удаляется, а полученные концы соединяются без использования узлов путем сращивания. Длина удаленных кусочков может быть разной. А сейчас я открою один секрет: у человека самое большое число таких удаляемых участков из расчета на один ген. Именно поэтому мы самые сложноорганизованные живые существа. В этом заключается наша уникальность; возможно, мы действительно являемся «венцом творения».



Наши гены имеют неоднородную структуру: они состоят из экзонов – участков, которые можно транслировать в белки, и интронов – промежуточных участков, которые удаляют, для чего их отрезают и сращивают (вновь соединяют) концы РНК. Гены человека в среднем имеют примерно 7–9 экзонов, между которыми расположены интроны. Представьте себе садовую изгородь, состоящую из столбов, чередующихся с пустым пространством, – это напоминает экзоны и интроны, хотя экзоны и интроны расположены с менее выраженной регулярностью. Более того, некоторые интроны могут оказаться очень большими (представьте себе калитку в изгороди).

Можно комбинировать различные связи между интронами и экзонами, в которых интроны, как правило, являются удаляемыми участками. На самом деле интроны не пустые, как промежутки между столбами забора. Что за информацию они несут в себе? Они не содержат последовательности генов для кодирования белков, но направляют и регулируют производство белка; интроны являются хранилищем регуляторной информации и определяют время и локализацию производства белка. Таким образом, интроны контролируют экзоны. Среди ученых было принято считать, что экзоны важнее, однако в настоящее время признано, что они зависят от интронов. Экзоны кодируют белки, в то время как интроны являются некодирующими (НК). Каталог известных нкРНК представляет собой быстро расширяющееся семейство очень важных регуляторных РНК – только в последнее время было открыто около десятка таких РНК. Поэтому, дорогой читатель, пожалуйста, запомните понятие «нкРНК». Соответствующая ДНК называется нкДНК, а ее транскрипция приводит к образованию нкРНК. Для меня особенно интересен тот факт, что вирус и человек – непревзойденные «специалисты» по сплайсингу. Почему вирусы? Потому, что они при их малых размерах проявляют столь незаурядные способности (они – наши предки!). Матрос понятия не имел, как много стоит за сращенной веревкой, которую он мне подарил.

В качестве примера получения «месседжей» из одного всеохватывающего «месседжа» давайте посмотрим, какое количество слов можно получить из «комбинированных экзонов» после «сплайсинга» слова с учетом пробелов. Supercalifragilisticexpialidocious – это не самое длинное, но одно из самых известных английских слов. Слова из него получают путем удаления (а не перестановки) букв, и они получились следующими: super (супер), supercilious (излишне волосяной), perfidious (вероломный), precious (драгоценный), serious (серьезный), superficial (поверхностный), fragile (хрупкий), pallid (бледный), series (серии), focus (фокус). И таких слов намного больше, можете сами попробовать. У вирусов сплайсинг осуществляется только в пределах одного «слова», поскольку они в силу своего минималистского строения содержат только экзоны и не имеют интронов. Так совершенно по-разному человек и вирусы научились оптимальным образом использовать свой генетический материал. Именно эта сложность лежит в основе сложности организмов человека и вируса. Вот почему я вдвойне благодарна матросу за подарок.

Вирусы – живые или неживые?

Вирусы не лишены признаков жизни – по крайней мере они более живые, нежели камень или кристалл. Можно слишком упростить понимание этого вопроса, сказав, что любые микроорганизмы, которые по размеру меньше вируса, – неживые, а более крупные микроорганизмы – живые. Вирусы находятся на границе между живым и неживым или же являются тем и другим одновременно. Я не усматриваю никакой сингулярности, не ставлю точки и не определяю четкую границу; речь, скорее, идет о постепенном переходе от отдельно взятой биомолекулы к клетке. На заре зарождения жизни на Земле РНК-содержащие вирусы были самыми крупными биомолекулами и существуют до сих пор.

«Что такое жизнь?» – этот вопрос в 1944 г. был вынесен в заголовок очень известной книги физика Эрвина Шрёдингера и побудил целое поколение физиков заниматься биологическими исследованиями. Жизнь подчиняется законам термодинамики и сохранения энергии. Для живых клеток характерна отрицательная энтропия, основанная на организованных структурах, в силу чего энтропия зачастую называется «мерой неупорядоченности». Например, если не убирать рабочий стол, беспорядок на нем будет усиливаться, а если постараться и навести порядок, стол станет чистым, без признаков беспорядка. Жизнь и второй закон термодинамики основаны на этом правиле: питание и энергия позволяют вести упорядоченную жизнь. Следует признать, что Шрёдингер задавался вопросом о законах жизни, а не о законах ее происхождения.

Я полагаю, что НАСА должно иметь более четкое определение жизни, поскольку агентство пытается найти жизнь за пределами нашей планеты. Безусловно, они знают, что ищут. Джерри Джойс, работавший в свое время в Институте Солка (Калифорния), возможно, внес свой вклад в это определение, поскольку ему удалось получить в пробирке самореплицирующуюся РНК, способную мутировать и эволюционировать. Это был его подход к «повторению происхождения жизни». Вполне возможно, что это вдохновило космическое агентство США, которое дало следующее определение жизни: самовоспроизводящаяся система, содержащая генетическую информацию и способная эволюционировать. (В этом определении я бы опустила слово «генетическую», поскольку структурная информация тоже может эволюционировать. Я имею в виду вироиды.)

Вирусы можно сравнить с яблоками. Яблоко, лежащее на столе, не может себя продублировать и превратиться в два яблока – то же самое относится и к вирусу. Яблоку нужна земля, чтобы стать яблоневым деревом, дающим новые яблоки. Яблоки ведь живые? А как же вирусы? Может ли в данном случае чем-то помочь Чарлз Дарвин? Он считал, что жизнь, возможно, зародилась в «маленьком теплом пруду», и предполагал, что сначала все было просто, на этом его предположения закончились. Вирусу нужен пруд или хотя бы пробирка – среда с питательными веществами для репликации и производства потомства. Вирусы – просто организованные организмы. Поэтому они более «живые», чем камни, а вот камни действительно неживые. Как это ни странно, некоторые вирусы способны к агрегации и образованию симметричных квазикристаллических структур, которые чрезвычайно стабильны, резистентны к теплу и в этом смысле действительно напоминают камни. У кристаллов неправильной формы может даже сохраняться неправильное сворачивание, что почти напоминает репликацию. Так же могут себя вести, например, некоторые белковые агрегаты в тканях головного мозга – например, прионы. Может быть, у них есть нечто схожее с вирусами? Предполагаю, что да, и мы увидим это далее.

Бактерии принято считать живыми микроорганизмами. Они обладают способностью к делению и, таким образом, к самовоспроизведению, а, что самое главное, они синтезируют белок. Синтез белка считается важным пограничным маркером, разделяющим живое и неживое. Бактериям тоже нужны поступающие извне питательные вещества, то есть они не полностью независимые микроорганизмы. Кроме того, они вовсе не так просты! Не существует биологического «вечного двигателя» – механизма, способного работать без помощи энергии. Но источником энергии необязательно является клетка. При отсутствии солнечных лучей это может быть энергия химических реакций, как в случае с «черными курильщиками», находящимися на дне океана.

К великому удивлению, недавно обнаруженные гигантские вирусы содержат компоненты, необходимые для синтеза белка. Они очень похожи на живые бактерии, являясь «квазибактериями». Соответственно гигантские вирусы также называют мимивирусами, поскольку они, похоже, мимикрируют под бактерии. Будучи почти бактериями, эти гигантские вирусы являются хозяевами для более мелких вирусов, которые реплицируются внутри них. Все это вызвало чрезвычайно сильное раздражение у классических вирусологов, поскольку гигантские вирусы никак не вписываются в устоявшиеся представления о вирусах и их определения. Открытие этих вирусов в 2013 г. было прокомментировано в журнале Nature с точки зрения места вирусов в процессе возникновения жизни. В этом материале указывалось, что гигантские вирусы нужно поместить в основание древа жизни – вот на что надеялись ученые, открывшие этот вирус! В самом начале не было клеток и мимивирусов – и те, и другие слишком большие по сравнению с вирусами, поэтому они не могли быть у истоков жизни. Вероятно, ранние вирусы не нуждались в клетках. Это довольно смелое заявление и единственное, что не очень вписывается в мое утверждение «Сначала были вирусы». Современные вирусы нуждаются в клетках, но, возможно, это результат длительной эволюции. На самом деле существуют вироиды, «голые молекулы РНК», способные к репликации и эволюции, которые, возможно, изначально не зависели от клеток, как сейчас. Они могут делать все это как в пробирке Джойса – без клеток. Их можно было бы назвать «голые вирусы».

На страницу:
3 из 5