Полная версия
Island Life; Or, The Phenomena and Causes of Insular Faunas and Floras
The quantity of heat required to melt ice or snow is very great, as we all know by experience of the long time masses of snow will remain unmelted even in warm weather. We shall however be better able to appreciate the great effect this has upon climate, by a few figures showing what this amount really is. In order to melt one cubic foot of ice, as much heat is required as would heat a cubic foot of water from the freezing point to 176° F., or two cubic feet to 88° F. To melt a layer of ice a foot thick will therefore use up as much heat as would raise a layer of ice-cold water two feet thick to the temperature of 88° F.; and the effect becomes still more easily understood if we estimate it as applied to air, for to melt a layer of ice only 1½ inches thick would require as much heat as would raise a stratum of air 800 feet thick from the freezing point to the tropical heat of 88° F.! We thus obtain a good idea, both of the wonderful power of snow and ice in keeping down temperature, and also of the reason why it requires so long a time to melt away, and is able to go on accumulating to such an extent as to become permanent. These properties would, however, be of no avail if it were liquid, like water; hence it is the state of solidity and almost complete immobility of ice that enables it to produce by its accumulation such extraordinary effects in physical geography and in climate, as we see in the glaciers of Switzerland and the ice-capped interior of Greenland.
High Land and great Moisture Essential to the Initiation of a Glacial Epoch.—Another point of great importance in connection with this subject, is the fact, that this permanent storing up of cold depends entirely on the annual amount of snow-fall in proportion to that of the sun and air-heat, and not on the actual cold of winter, or even on the average cold of the year.46 A place may be intensely cold in winter and may have a short arctic summer, yet, if so little snow falls that it is quickly melted by the returning sun, there is nothing to prevent the summer being hot and the earth producing a luxuriant vegetation. As an example of this we have great forests in the extreme north of Asia and America where the winters are colder and the summers shorter than in Greenland in Lat. 62° N., or than in Heard Island and South Georgia, both in Lat. 53° S. in the Southern Ocean, and almost wholly covered with perpetual snow and ice. At the "Jardin" on the Mount Blanc range, above the line of perpetual snow, a thermometer in an exposed situation marked -6° F. as the lowest winter temperature: while in many parts of Siberia mercury freezes during several weeks in winter, showing a temperature below -40° F.; yet here the summers are hot, all the snow disappears, and there is a luxuriant vegetation. Even in the very highest latitudes reached by our last Arctic Expedition there is very little perpetual snow or ice, for Captain Nares tells us that north of Haye's Sound, in Lat. 79° N., the mountains were remarkably free from ice-cap, while extensive tracts of land were free from snow during summer, and covered with a rich vegetation with abundance of bright flowers. The reason of this is evidently the scanty snow-fall, which rendered it sometimes difficult to obtain enough to form shelter-banks around the ships; and this was north of 80° N. Lat., where the sun was absent for 142 days.
Perpetual Snow Nowhere Exists on Lowland Areas.—It is a very remarkable and most suggestive fact, that nowhere in the world at the present time are there any extensive lowlands covered with perpetual snow. The Tundras of Siberia and the barren grounds of N. America are all clothed with some kind of summer vegetation;47 and it is only where there are lofty mountains or plateaus—as in Greenland, Spitzbergen, and Grinnell's Land—that glaciers, accompanied by perpetual snow, cover the country, and descend in places to the level of the sea. In the Antarctic regions there are extensive highlands and lofty mountains, and these are everywhere exposed to the influence of moist sea-air; and it is here, accordingly, that we find the nearest approach to a true ice-cap covering the whole circumference of the Antarctic continent, and forming a girdle of ice-cliffs which almost everywhere descend to the sea. Such Antarctic islands as South Georgia, South Shetland, and Heard Island, are often said to have perpetual snow at sea-level; but they are all very mountainous, and send down glaciers into the sea, and as they are exposed to moist sea-air on every side, the precipitation, almost all of which takes the form of snow even in summer, is of course unusually large.48
That high land in an area of great precipitation is the necessary condition of glaciation, is well shown by the general state of the two polar areas at the present time. The northern part of the north temperate zone is almost all land, mostly low but with elevated borders; while the polar area is, with the exception of Greenland and a few other considerable islands, almost all water. In the southern hemisphere the temperate zone is almost all water, while the polar area is almost all land, or is at least inclosed by a ring of high and mountainous land. The result is that in the north the polar area is free from any accumulation of permanent ice (except on the highlands of Greenland and Grinnell's Land), while in the south a complete barrier of ice of enormous thickness appears to surround the pole. Dr. Croll shows, from the measured height of numerous Antarctic icebergs (often miles in length) that the ice-sheet from which they are the broken outer fragments must be from a mile to a mile and a half in thickness.49 As this is the thickness of the outer edge of the ice it must be far thicker inland; and we thus find that the Antarctic continent is at this very time suffering glaciation to quite as great an extent as we have reason to believe occurred in the same latitudes of the northern hemisphere during the last glacial epoch.
The accompanying diagrams show the comparative state of the two polar areas both as regards the distribution of land and sea, and the extent of the ice-sheet and floating icebergs. The much greater quantity of ice at the south pole is undoubtedly due to the presence of a large extent of high land, which acts as a condenser, and an unbroken surrounding ocean, which affords a constant supply of vapour; and the effect is intensified by winter being there in aphelion, and thus several days longer than with us, while the whole southern hemisphere is at that time farther from the sun, and therefore receives less heat.
We see, however, that with less favourable conditions for the production and accumulation of ice, Greenland is glaciated down to Lat. 61°. What, then, would be the effect if the Antarctic continent, instead of being confined almost wholly within the south polar circle, were to extend in one or two great mountainous promontories far into the temperate zone? The comparatively small Heard Island in S. Lat. 53° is even now glaciated down to the sea. What would be its condition were it a northerly extension of a lofty Antarctic continent? We may be quite sure that glaciation would then be far more severe, and that an ice-sheet corresponding to that of Greenland might extend to beyond the parallel of 50° S. Lat. Even this is probably much too low an estimate, for on the west coast of New Zealand in S. Lat. 43° 35′ a glacier even now descends to within 705 feet of the sea-level; and if those islands were the northern extension of an Antarctic continent, we may be pretty sure that they would be nearly in the ice-covered condition of Greenland, although situated in the latitude of Marseilles.
Diagram of the approximate extent of Permanent and Floating Ice around the North and the South Poles. (After Petermann.)
Conditions Determining the Presence or Absence of Perpetual Snow.—It is clear, then, that the vicinity of a sea or ocean to supply moisture, together with high land to serve as a condenser of that moisture into snow, are the prime essentials of a great accumulation of ice; and it is fully in accordance with this view that we find the most undoubted signs of extensive glaciation in the west of Europe and the east of North America, both washed by the Atlantic and both having abundance of high land to condense the moisture which it supplies. Without these conditions cold alone, however great, can produce no glacial epoch. This is strikingly shown by the fact, that in the very coldest portions of the two northern continents—Eastern Siberia and the north-western shores of Hudson's Bay—there is no perennial covering of snow or ice whatever. No less remarkable is the coincidence of the districts of greatest glaciation with those of greatest rainfall at the present time. Looking at a rain-map of the British Isles, we see that the greatest area of excessive rainfall is the Highlands of Scotland, then follows the west of Ireland, Wales, and the north of England; and these were glaciated pretty nearly in proportion to the area of country over which there is an abundant supply of moisture. So in Europe, the Alps and the Scandinavian mountains have excessive rainfall, and have been areas of excessive glaciation, while the Ural and Caucasian mountains, with less rain, never seem to have been proportionally glaciated. In North America the eastern coast has an abundant rainfall, and New England with North-eastern Canada seems to have been the source of much of the glaciation of that continent.50
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
1
A small number of species belonging to the West Indies are found in the extreme southern portion of the Florida Peninsula.
2
I cannot avoid here referring to the enormous waste of labour and money with comparatively scanty and unimportant results to natural history of most of the great scientific voyages of the various civilized governments during the present century. All these expeditions combined have done far less than private collectors in making known the products of remote lands and islands. They have brought home fragmentary collections, made in widely scattered localities, and these have been usually described in huge folios or quartos, whose value is often in inverse proportion to their bulk and cost. The same species have been collected again and again, often described several times over under new names, and not unfrequently stated to be from places they never inhabited. The result of this wretched system is that the productions of some of the most frequently visited and most interesting islands on the globe are still very imperfectly known, while their native plants and animals are being yearly exterminated, and this is the case even with countries under the rule or protection of European governments. Such are the Sandwich Islands, Tahiti, the Marquesas, the Philippine Islands, and a host of smaller ones; while Bourbon and Mauritius, St. Helena, and several others, have only been adequately explored after an important portion of their productions has been destroyed by cultivation or the reckless introduction of goats and pigs. The employment in each of our possessions, and those of other European powers, of a resident naturalist at a very small annual expense, would have done more for the advancement of knowledge in this direction than all the expensive expeditions that have again and again circumnavigated the globe.
3
The general facts of Palæontology, as bearing on the migrations of animal groups, are summarised in my Geographical Distribution of Animals, Vol. I. Chapters VI., VII., and VIII.
4
Since these lines were written, a fine series of specimens of this rare humming-bird has been obtained from the same locality. (See Proc. Zool. Soc. 1881, pp. 827-834.)
5
Many of these large genera are now subdivided, the divisions being sometimes termed genera, sometimes sub-genera.
6
The Palæarctic region includes temperate Asia and Europe, as will be explained in the next chapter.
7
The following list of the genera of reptiles and amphibia peculiar to the Palæarctic Region has been furnished me by Mr. G. A. Boulenger, of the British Museum:—
8
Remains of the dingo have been found fossil in Pleistocene deposits but the antiquity of man in Australia is not known. It is not, however, improbable that it may be as great as in Europe. My friend A. C. Swinton, Esq., while working in the then almost unknown gold-field of Maryborough, Victoria, in January, 1855, found a fragment of a well-formed stone axe resting on the metamorphic schistose bed-rock about five feet beneath the surface. It was overlain by the compact gravel drift called by the miners "cement," and by an included layer of hard iron-stained sandstone. The fragment is about an inch and three-eighths wide and the same length, and is of very hard fine-grained black basalt. One side is ground to a very smooth and regular surface, terminating in a well-formed cutting edge more than an inch long, the return face of the cutting part being about a quarter of an inch wide. The other side is a broken surface. The weapon appears to have been an axe or tomahawk closely resembling that figured at p. 335 of Lumholtz's Among Cannibals, from Central Queensland. The fragment was discovered by Mr. Swinton and the late Mr. Mackworth Shore, one of the discoverers of the gold-field, before any rush to it had taken place, and it seems impossible to avoid the conclusion that it was formed prior to the deposit of the gravel drift and iron-stained sandstone under which it lay. This would indicate a great antiquity of man in Australia, and would enable us to account for the fossilised remains of the dingo in Pleistocene deposits as those of an animal introduced by man.
9
These facts are taken from a memoir on The Mammals and Winter Birds of Florida, by J. A. Allen; forming Vol. II., No. 3, of the Bulletin of the Museum of Comparative Zoology at Harvard College, Cambridge, Massachusetts.
10
The great variation in wild animals is more fully discussed and illustrated in the author's Darwinism (Chapter III.).
11
See Ibis, 1879, p. 32.
12
In Mr. Seebohm's latest work, Birds of the Japanese Empire (1890), he says, "Examples from North China are indistinguishable from those obtained in Greece" (p. 82).
13
Ibis, 1879, p. 40. In his Birds of the Japanese Empire (1890), Mr. Seebohm classes the Japanese and European forms as E. schœniclus, and thinks that their range is probably continuous across the two continents.
14
Lyell's Principles of Geology, ii., p. 369.
15
Mr. Darwin found that the large Helix pomatia lived after immersion in sea-water for twenty days. It is hardly likely that this is the extreme limit of their powers of endurance, but even this would allow of their being floated many hundred miles at a stretch, and if we suppose the shell to be partially protected in the crevice of a log of wood, and to be thus out of water in calm weather, the distance might extend to a thousand miles or more. The eggs of fresh-water mollusca, as well as the young animals, are known to attach themselves to the feet of aquatic birds, and this is probably the most efficient cause of their very wide diffusion.
16
Principles of Geology, 11th Ed., Vol. I., p. 258.
17
On Limestone as an Index of Geological Time.
18
In his Preliminary Report on Oceanic Deposit, Mr. Murray says:—"It has been found that the deposits taking place near continents and islands have received their chief characteristics from the presence of the debris of adjacent lands. In some cases these deposits extend to a distance of over 150 miles from the coast." (Proceedings of the Royal Society, Vol. XXIV. p. 519.)
"The materials in suspension appear to be almost entirely deposited within 200 miles of the land." (Proceedings of the Royal Society of Edinburgh, 1876-77, p. 253.)
19
Geographical Evolution. (Proceedings of the Royal Geographical Society. 1879, p. 426.)
20
Professor Dana was, I believe, the first to point out that the regions which, after long undergoing subsidence and accumulating vast piles of sedimentary deposit have been elevated into mountain ranges, thereby become stiff and unyielding, and that the next depression and subsequent upheaval will be situated on one or the other sides of it; and he has shown that, in North America, this is the case with all the mountains of the successive geological formations. Thus, depressions, and elevations of extreme slowness but often of vast amount, have occurred successively in restricted adjacent areas; and the effect has been to bring each portion in succession beneath the ocean but always bordered on one or both sides by the remainder of the continent, from the denudation of which the deposits are formed which, on the subsequent upheaval, become mountain ranges. (Manual of Geology, 2nd Ed., p. 751.)
21
Nature, Vol. II., p. 297.
22
Sir W. Thomson, Voyage of Challenger, Vol. II., p. 374.
23
The following is the analysis of the chalk at Oahu:—
This chalk consists simply of comminuted corals and shells of the reef. It has been examined microscopically and found to be destitute of the minute organisms abounding in the chalk of England. (Geology of the United States Exploring Expedition, p. 150.) Mr. Guppy also found chalk-like coral limestones containing 95 p.c. of carbonate of lime in the Solomon Islands.
The absence of Globigerinæ is a local phenomenon. They are quite absent in the Arafura Sea, and no Globigerina-ooze was found in any of the enclosed seas of the Pacific, but with these exceptions the Globigerinæ "are really found all over the bottom of the ocean." (Murray on Oceanic Deposits—Proceedings of Royal Society, Vol. XXIV., p. 523.)
The above analysis shows a far closer resemblance to chalk than that of the Globigerina-ooze of the Atlantic, four specimens of which given by Sir W. Thomson (Voyage of the Challenger Vol. II. Appendix, pp. 374-376, Nos. 9, 10, 11 and 12) from the mid-Atlantic, show the following proportions:—
In addition to the above there is a quantity of insoluble residue consisting of small particles of sanidine, augite, hornblende, and magnetite, supposed to be the product of volcanic dust or ashes carried either in the air or by ocean currents. This volcanic matter amounts to from 4.60 to 8.33 per cent. of the Globigerina-ooze of the mid-Atlantic, where it seems to be always present; and the small proportion of similar matter in true chalk is another proof that its origin is different, and that it was deposited far more rapidly than the oceanic ooze.
The following analysis of chalk by Mr. D. Forbes will show the difference between the two formations:—
(From Quarterly Journal of the Geological Society, Vol. XXVII.)
The large proportion of carbonate of lime, and the very small quantity of silica, alumina, and insoluble débris, at once distinguish true chalk from the Globigerina-ooze of the deep ocean bed.
24
Notes on Reticularian Rhizopoda; in Microscopical Journal, Vol. XIX., New Series, p. 84.
25
Proceedings of the Royal Society, Vol. XXIV. p. 532.
26
See Presidential Address in Sect. D. of British Association at Plymouth, 1877.
27
Geological Magazine, 1871, p. 426.
28
In his lecture on Geographical Evolution (which was published after the greater part of this chapter had been written) Sir Archibald Geikie expresses views in complete accordance with those here advocated. He says:—"The next long era, the Cretaceous, was more remarkable for slow accumulation of rock under the sea than for the formation of new land. During that time the Atlantic sent its waters across the whole of Europe and into Asia. But they were probably nowhere more than a few hundred feet deep over the site of our continent, even at their deepest part. Upon their bottom there gathered a vast mass of calcareous mud, composed in great part of foraminifera, corals, echinoderms, and molluscs. Our English chalk, which ranges across the north of France, Belgium, Denmark, and the north of Germany, represents a portion of the deposits of that sea-floor." The weighty authority of the Director-General of the Geological Survey may perhaps cause some geologists to modify their views as to the deep-sea origin of chalk, who would have treated any arguments advanced by myself as not worthy of consideration.
29
Introduction and Succession of Vertebrate Life in America, by Professor O. C. Marsh. Reprinted from the Popular Science Monthly, March, April, 1878.
30
Physical Geography and Geology of Great Britain, 5th Ed. p. 61.
31
Of late it has been the custom to quote the so-called "ridge" down the centre of the Atlantic as indicating an extensive ancient land. Even Professor Judd at one time adopted this view, speaking of the great belt of Tertiary volcanoes "which extended through Greenland, Iceland, the Faroe Islands, the Hebrides, Ireland, Central France, the Iberian Peninsula, the Azores, Madeira, Canaries, Cape de Verde Islands, Ascension, St. Helena, and Tristan d'Acunha, and which constituted as shown by the recent soundings of H.M.S. Challenger a mountain-range, comparable in its extent, elevation, and volcanic character with the Andes of South America" (Geological Mag. 1874, p. 71). On examining the diagram of the Atlantic Ocean in the Challenger Reports, No. 7, a considerable part of this ridge is found to be more than 1,900 fathoms deep, while the portion called the "Connecting Ridge" seems to be due in part to the deposits carried out by the River Amazon. In the neighbourhood of the Azores, St. Paul's Rocks, Ascension, and Tristan d'Acunha are considerable areas varying from 1,200 to 1,500 fathoms deep, while the rest of the ridge is usually 1,800 or 1,900 fathoms. The shallower water is no doubt due to volcanic upheaval and the accumulation of volcanic ejections, and there may be many other deeply submerged old volcanoes on the ridge; but that it ever formed a chain of mountains "comparable in elevation with the Andes," there seems not a particle of evidence to prove. It is however probable that this ridge indicates the former existence of some considerable Atlantic islands, which may serve to explain the presence of a few identical genera, and even species of plants and insects in Africa and South America, while the main body of the fauna and flora of these two continents remains radically distinct.
In my Darwinism (pp. 344-5) I have given an additional argument founded on the comparative height and area of land with the depth and area of ocean, which seems to me to add considerably to the weight of the evidence here submitted for the permanence of oceanic and continental areas.