Полная версия
Теорема века. Мир с точки зрения математики
Но недостаточно знать высоту грот-мачты, – возражаю я, – чтобы вычислить возраст капитана. Определив все размеры корпуса корабля, вы будете иметь много уравнений, но все-таки вы не узнаете этого возраста. Все ваши измерения, относящиеся к частям корабельного корпуса, не могут обнаружить вам ничего, кроме того, что касается этих частей. Точно так и ваши опыты, как бы многочисленны они ни были: указывая только на взаимные отношения тел, они не скажут нам ничего о взаимных отношениях различных частей пространства.
7. Вы скажете, что если опыты относятся к телам, то они относятся по крайней мере к геометрическим свойствам тел.
Но, прежде всего, – что вы понимаете под геометрическими свойствами тел? Допустим, что здесь речь идет об отношениях тел к пространству; но эти свойства недоступны опытам, которые касаются только взаимного отношения между телами. Одного этого замечания было бы достаточно, чтобы показать, что речь идет о другом.
Постараемся прежде всего понять смысл выражения: геометрические свойства тел. Когда я говорю, что тело слагается из нескольких частей, я думаю, что этим я не высказываю суждения о геометрическом свойстве; это осталось бы справедливым, даже если бы я условился пользоваться неподходящим названием точек для наименьших рассматриваемых мною частей.
Когда я говорю, что такая-то часть такого-то тела находится в соприкосновении с такой-то частью другого какого-нибудь тела, я высказываю предложение, касающееся взаимных отношений этих двух тел, но не их отношений к пространству.
Я думаю, вы согласитесь со мной, что здесь мы имеем дело не с геометрическими свойствами; по крайней мере, вы, наверно, согласитесь, что эти свойства независимы от каких бы то ни было понятий метрической геометрии.
После этого представим себе, что имеется твердое тело, состоящее из восьми тонких железных стержней ОА, ОВ, ОС, ОD, ОE, ОF, OG и ОН, соединенных вместе своими концами О.
Пусть, с другой стороны, мы имеем второе твердое тело, например кусок дерева, на котором отметим чернилами три маленьких пятнышка; я назову их αβγ.
Пусть мы убедились затем, что можно привести в соприкосновение αβγ с AGO (т. е. одновременно α с А, β с G и γ с О), потом – что последовательно можно привести в соприкосновение αβγ с ВGO, CGO, DGO, EGO, FGO, затем с АНО, ВHО, СHО, DНО, ЕНО, FHO, потом αγ последовательно с AВ, ВС, CD, DE, EF, FA.
Вот опытные факты, в которых можно удостовериться, не имея наперед никакого знания о форме или метрических свойствах пространства. Они никоим образом не относятся к «геометрическим свойствам тел». И эти факты будут невозможны, если тела, над которыми экспериментируют, движутся, следуя группе такой же структуры, как группа Лобачевского (я хочу сказать – по законам движения твердых тел в геометрии Лобачевского). Значит, достаточно этих фактов, чтобы убедиться, что тела эти движутся, следуя евклидовой группе, или, по крайней мере, что они движутся не в соответствии с группой Лобачевского.
Что эти факты совместимы с евклидовой группой, легко убедиться: стоит только представить себе αβγ неизменяемым твердым телом нашей обычной геометрии, имеющим форму прямоугольного треугольника, а точки A, В, С, D, E, F, G, Н – вершинами многогранника, образованного двумя правильными шестигранными пирамидами нашей обыкновенной геометрии, имеющими общим основанием ABCDEF, а вершинами – одна G, другая Н.
Предположим теперь, что вместо предыдущих фактов мы наблюдали, что можно опять-таки наложить αβγ последовательно на AGO, BGO, CGO, DGO, EGO, FGO, АНО, ВHО, СHО, DHО, EHО, FHО, а потом можно αβ (отнюдь не αγ) наложить последовательно на АВ, ВС, CD, DE, EF и FA.
Вот опытные факты, которые можно было бы наблюдать, если бы неевклидова геометрия была правильна и если бы αβγи OABCDEFGH были неизменяемыми твердыми телами: первое – в форме прямоугольного треугольника, а второе – в форме двойной правильной шестигранной пирамиды соответствующих размеров.
Итак, эти новые факты невозможны, раз тела движутся, следуя евклидовой группе; но они стали бы возможны, если бы допустить, что тела движутся подобно группе Лобачевского. Их было бы, следовательно, достаточно (если бы они наблюдались), чтобы убедиться, что рассматриваемые тела не движутся, следуя евклидовой группе.
Таким образом, не вводя никакой гипотезы о форме и природе пространства, об отношениях тел к пространству, не приписывая телам никакого геометрического свойства, я нашел факты, позволяющие мне показать, что доступные опытам тела в одном случае движутся, следуя структуре группы Евклида, в другом – следуя структуре группы Лобачевского.
Однако нельзя сказать, что первый ряд фактов может составить опыт, доказывающий, что пространство является евклидовым, а второй – опыт, доказывающий, что пространство неевклидово.
В самом деле, можно было бы представить себе тела, движущиеся таким образом, что они осуществляют второй ряд фактов. Доказательством служит то, что любой механик мог бы их построить, если бы он захотел взять на себя этот труд и если бы придавал этому значение. Однако из этого вы не заключили бы, что пространство неевклидово, тем более что обыкновенные твердые тела продолжали бы существовать и тогда, когда механик построил бы странные тела, упомянутые мною: так что пришлось бы даже заключить, что пространство является одновременно евклидовым и неевклидовым.
Предположим, например, что мы имеем большую сферу радиуса R и что температура убывает от центра к поверхности этой сферы по закону, о котором я говорил, описывая неевклидов мир.
Мы могли бы иметь тела, расширением которых можно было бы пренебречь и которые вели бы себя как обыкновенные неизменяемые твердые тела; с другой стороны, мы могли бы иметь тела очень растяжимые, которые вели бы себя как неевклидовы твердые тела. Мы могли бы иметь две двойные пирамиды OABCDEFGH и O’A’B’C’D’E’F’G’H’ и два треугольника αβγ и α’β’γ’. Первая двойная пирамида была бы прямолинейной, вторая – криволинейной; треугольник αβγ был бы сделан из нерастяжимого, а треугольник α’β’γ’ – из очень растяжимого вещества.
Тогда можно было бы обнаружить первый ряд фактов с двойной пирамидой ОАН и треугольником αβγ и второй – с двойной пирамидой О’А’Н’ и треугольником α’β’γ’. И тогда опыт, по-видимому, убеждал бы сначала, что евклидова геометрия истинна, а затем – что она ложна.
Таким образом, опыты относятся не к пространству, а к телам.
8. Добавление. Для полноты мне следовало бы еще сказать о вопросе очень тонком, который потребовал бы подробного развития; я ограничусь здесь только резюмированием того, что я изложил в «Revue de Métaphysique et de Morale» и в «The Monist». Что мы хотим сказать, когда говорим, что пространство имеет три измерения?
Мы видели важность тех «внутренних изменений», которые нам открываются нашими мускульными ощущениями. Они могут служить для характеристики различных положений нашего тела. Возьмем за начальное одно из этих положений А. Когда мы переходим от этого начального положения к какому-нибудь другому положению В, мы испытываем ряд мускульных ощущений S, и этим рядом S определится В. Однако заметим, что часто мы рассматриваем два ряда S и S’ как определяющие одно и то же положение В (потому что начальное и конечное положение А и В остаются теми же, но промежуточные положения и соответствующие ощущения могут различаться). Как же мы узнаем об эквивалентности этих двух рядов? Это возможно потому, что они могут служить для компенсации одного и того же внешнего изменения, или, более общо, потому, что когда речь идет о компенсации внешнего изменения, один из рядов может быть заменен другим.
Среди этих рядов мы выделили те, которые одни могут компенсировать внешнее изменение и которые мы назвали «перемещениями». Так как мы не можем различать два слишком близких перемещения, то совокупность этих перемещений представляет характерные черты физической непрерывности; опыт учит нас, что эта физическая непрерывность имеет шесть измерений; но мы не знаем еще, сколько измерений имеет пространство само по себе; нам надо решить сначала другой вопрос.
Что такое точка пространства? Все думают, что знают это, но это только иллюзия. Когда мы стараемся представить себе точку пространства, то она выступает в виде черного пятна на белой бумаге или как белое пятно от мела на черной доске; это всегда объект. Поэтому вопрос должен быть поставлен следующим образов: что значит, когда я говорю, что предмет В находится в той же точке, которую только что занимал предмет A? И еще: какой критерий позволит мне узнать это?
Я хочу этим сказать, что хотя сам я не шевелился (о чем свидетельствует мое мускульное чувство), но мой указательный палец, который только что касался предмета A, теперь касается предмета В. Я мог бы воспользоваться другими критериями, например средним пальцем или чувством зрения. Но первый критерий достаточен, я знаю, что если он отвечает утвердительно, то все другие критерии дадут тот же ответ. Я знаю это из опыта – я не могу знать этого a priori.
Поэтому-то я говорю также, что осязание не может действовать на расстоянии; это – только другой способ выражения того же экспериментального факта. И если я говорю, наоборот, что зрение действует на расстоянии, то это значит, что критерий, доставляемый зрением, может отвечать утвердительно, тогда как другие отвечают отрицательно.
В самом деле, пусть некоторый предмет даже после удаления дает свое отображение в той же точке сетчатки. Тогда зрение дает положительный ответ: предмет пребывает в той же точке, но осязание отвечает отрицательно, ибо палец, только что касавшийся предмета, теперь уже больше его не касается. Если бы опыт показал нам, что касание одним пальцем дает отрицательный ответ, тогда как касание другим – положительный, то мы сказали бы то же самое: что осязание действует на расстоянии.
Итак, для каждого положения моего тела мой указательный палец определяет некоторую точку; это и только это определяет точку пространства.
Каждому положению соответствует, таким образом, одна точка; но часто бывает, что та же точка соответствует нескольким различным положениям (например, в том случае, когда мы говорим, что наш палец не двигался, между тем как остальная часть тела переместилась). Мы выделяем, следовательно, среди изменений положения такие, при которых палец не двигается. Как мы приходит к этому? Только благодаря тому, что мы часто замечаем, как при этих изменениях предмет, находящийся в контакте с пальцем, не разрывает этого контакта.
Отнесем к одному и тому же классу все те положения, которые вытекают одни из других путем одного из выделенных нами таким образом изменений. Всем положениям одного и того же класса будет соответствовать одна и та же точка пространства. Поэтому каждому классу будет соответствовать точка, и каждой точке – класс. Но можно сказать: то, к чему относится опыт, не есть точка; это есть указанный класс изменений или лучше – соответственный класс мускульных ощущений.
И когда мы говорим, что пространство имеет три измерения, мы хотим просто сказать, что совокупность этих классов выступает перед нами с характерными чертами физической непрерывности трех измерений.
Мог бы показаться заманчивым тот вывод, что именно опыт показал нам, сколько измерений имеет пространство. Но в действительности наши опыты имели здесь дело еще не с пространством, а с нашим телом и с его отношениями к соседним предметам. Кроме того, они слишком грубы.
В нашем уме предсуществовала скрытая идея известного числа групп: это – те группы, теорию которых создал Ли. Какую из них мы выберем в качестве как бы эталона, с которым будем сравнивать реальные явления? И, выбрав эту группу, какую из ее подгрупп мы возьмем для характеристики точки пространства? Раньше нами руководил опыт, показывая, какой выбор лучше соответствует свойствам нашего тела. Но тут его роль ограничивается.
Опыт предков. Часто говорят, что если индивидуальный опыт не мог породить геометрию, то это не относится к опыту всего человеческого вида. Но что под этим понимается? Не хотят ли этим сказать, что если мы не в состоянии доказать постулат Евклида, то наши предки могли это сделать? Ни в коем случае. Этим хотят сказать, что в силу естественного отбора наш ум приспособился к условиям внешнего мира, что он усвоил себе геометрию, наиболее выгодную для вида, или, другими словами, наиболее удобную. Но это соответствует нашим выводам о том, что геометрия не истинна, а только выгодна.
Часть III. Сила
Глава VI. Классическая механика
Англичане преподают механику как науку экспериментальную; на континенте же ее всегда излагают как науку более или менее дедуктивную и априорную. Бесспорно, правы англичане; но как же оказалось возможным так долго держаться другого способа изложения? Почему ученые на континенте, старавшиеся избежать привычек своих предшественников, чаще всего оказывались не в состоянии полностью от них освободиться?
С другой стороны, если принципы механики не имеют иного источника, кроме опыта, не являются ли они в силу этого только приближенными и временными? Не могут ли новые опыты когда-нибудь заставить нас видоизменить эти принципы или даже совсем отказаться от них?
Трудность решения этих естественно возникающих вопросов происходит главным образом от того, что руководства по механике не вполне ясно различают, где опыт, где математическое суждение, где условное соглашение, где гипотеза.
Это еще не все:
1) Абсолютного пространства не существует; мы познаем только относительные движения; между тем механические факты чаще всего излагают так, как если бы существовало абсолютное пространство, к которому их можно было бы отнести.
2) Не существует абсолютного времени; утверждение, что два промежутка времени равны, само по себе не имеет смысла и можно принять его только условно.
3) Мы не способны к непосредственному восприятию не только равенства двух промежутков времени, но даже простого факта одновременности двух событий, происходящих в различных местах; я разъяснил это в статье, озаглавленной «La mesure du temps»[6].
4) Наконец, наша евклидова геометрия есть лишь род условного языка; мы могли бы изложить факты механики, относя их к неевклидову пространству, которое было бы основой, менее удобной, но столь же законной, как и наше обычное пространство; изложение слишком осложнилось бы, но осталось бы возможным.
Таким образом, абсолютное пространство, абсолютное время, даже сама геометрия не имеют характера вещей, обусловливающих собой механику; они так же мало предваряют существование механики, как мало французский язык логически предваряет существование истин, выражаемых по-французски.
Можно было бы попытаться изложить основные законы механики на языке, независимом от всех этих соглашений; тогда, без сомнения, можно было бы лучше отдать себе отчет в том, что представляют эти законы сами по себе; как раз это и попытался сделать (по крайней мере отчасти) Андрад в своих «Leçons de Mécanique physique».
Формулировка этих законов оказалась бы, конечно, гораздо более сложной, потому что все указанные выше соглашения и созданы именно для того, чтобы сократить и упростить эту формулировку.
Здесь я оставляю в стороне все эти трудности, за исключением вопроса об абсолютном пространстве. Я далек от мысли пренебрегать ими; но мы достаточно разобрали их в двух первых частях.
Итак, я допущу временно абсолютное время и евклидову геометрию.
Принцип инерции. Тело, на которое не действует никакая сила, может двигаться только прямолинейно и равномерно.
Есть ли это истина, присущая a priori нашему разуму? Если бы это было так, то как же не знали ее греки? Как могли они думать, что движение прекращается, как только перестает действовать вызвавшая его причина, или что всякое тело, не встречающее никаких препятствий со стороны, принимает круговое движение, как наиболее совершенное из всех движений?
Говорят, что скорость тела не может измениться, раз нет основания для ее изменения; но не можем ли мы с таким же правом утверждать, что не может измениться положение тела или кривизна его траектории, раз внешняя причина не вызывает их изменения?
Если принцип инерции не принадлежит к числу априорных истин, то не значит ли это, что мы имеем в нем экспериментальный факт? Но разве когда-нибудь экспериментировали над телами, на которые не действовала никакая сила? И как можно было бы получить уверенность, что на эти тела не действует никакая сила? Обыкновенно ссылаются на пример бильярдного шара, очень долгое время катящегося по мраморному столу; но на каком основании мы говорим, что на него не действует никакая сила? Не на том ли, что он слишком удален от всех других тел, чтобы испытывать от них сколько-нибудь заметное действие? Однако он не дальше от земли, чем в том случае, если бы был свободно брошен в воздухе; а всякий знает, что в таком случае он подвергся бы влиянию тяжести, обусловленному земным притяжением.
Преподаватели механики обычно быстро излагают пример с шаром; но они прибавляют, что принцип инерции проверяется косвенно в своих следствиях. Это – неправильное выражение; очевидно, они хотят сказать, что можно проверить различные следствия более общего принципа, по отношению к которому принцип инерции является только частным случаем.
Этот общий принцип я предложу сформулировать так:
Ускорение тела зависит только от положения этого тела и соседних тел и от их скоростей. Математик сказал бы, что движения всех материальных частиц Вселенной определяются дифференциальными уравнениями второго порядка.
Чтобы уяснить, что здесь мы имеем дело с естественным обобщением закона инерции, я позволю себе привести один воображаемый случай. Выше я указывал, что закон инерции не присущ нам a priori; другие законы были бы столь же хорошо, как и он, совместимы с принципом достаточного основания. Когда на тело не действует никакая сила, то мы могли бы вообразить, что неизменным является не скорость его, а его положение или его ускорение.
Итак, представим себе на минуту, что один из этих двух гипотетических законов есть закон природы и заступает место нашего закона инерции. Каково было бы его естественное обобщение? Поразмыслив минуту, мы это уясним.
В первом случае пришлось бы допустить, что скорость тела зависит только от его положения и от положения соседних тел; во втором – что изменение ускорения тела зависит только от положения этого тела и соседних тел, от их скоростей и от их ускорений.
Или, говоря математическим языком, дифференциальные уравнения движения были бы в первом случае первого порядка, во втором – третьего.
Видоизменим несколько наш воображаемый пример. Представим себе мир, аналогичный нашей Солнечной системе, лишь с тем отличием, что здесь все орбиты планет благодаря чистой случайности не имеют эксцентриситетов и наклонений. Представим себе далее, что массы этих планет слишком ничтожны, чтобы их взаимные возмущения были ощутимы. Астрономы, населяющие одну из этих планет, не преминули бы заключить, что орбита светила может быть только круговой и параллельной определенной плоскости; тогда положения светила в данный момент было бы достаточно для определения его скорости и всей его траектории. Закон инерции, который они установили бы, был бы первый из двух гипотетических законов, о которых я только что говорил.
Вообразим теперь, что вдруг через эту систему проходит с огромной скоростью массивное тело, пришедшее из отдаленных созвездий. Все орбиты окажутся сильно возмущенными. Но это еще не очень смутило бы наших астрономов; они догадались бы, что это новое светило является единственным виновником всего зла. Стоит ему удалиться, – сказали бы они, – и порядок восстановится сам собой; конечно, расстояния планет от Солнца уже не станут вновь такими же, какими они были до катастрофы, но когда не будет более возмущающего светила, орбиты снова станут круговыми. И только тогда, когда возмущающее тело было бы уже далеко, а орбиты, вместо того чтобы опять стать круговыми, превратились бы в эллиптические, – только тогда эти астрономы заметили бы свою ошибку и необходимость переделать всю свою механику.
Я несколько подробнее остановился на этих гипотезах, потому что, как мне думается, уяснить себе содержание нашего обобщенного закона инерции можно, только сопоставляя его с противоположным допущением.
Мы возвращаемся теперь к этому обобщенному закону инерции. Спрашивается, проверен ли он в настоящее время на опыте, и возможно ли это вообще? Когда Ньютон писал свои «Начала»[7], он смотрел на эти истину как на выработанную и доказанную экспериментально. Таковой она была в его глазах не только благодаря антропоморфному представлению, о котором речь будет дальше, но благодаря трудам Галилея; она была таковой и в силу законов Кеплера; действительно, согласно этим законам траектория планеты полностью определяется ее начальными положением и скоростью; а это как раз то, чего требует наш обобщенный принцип инерции.
Чтобы этот принцип оказался истинным только по внешнему виду, чтобы можно было опасаться, что когда-нибудь он будет заменен одним из принципов, которые я сейчас противопоставлял ему, пришлось бы допустить, что мы введены в заблуждение какой-нибудь удивительной случайностью вроде той, которая в развитом мною выше примере ввела в заблуждение наших воображаемых астрономов.
Подобная гипотеза слишком неправдоподобна, чтобы на ней останавливаться. Никто не поверит в возможность таких случайностей. Конечно, вероятность того, чтобы два эксцентриситета были как раз равны нулю (в пределах погрешностей наблюдения), не меньше, чем вероятность того, чтобы один был равен, например, 0,1, а другой 0,2 (тоже в пределах погрешностей наблюдения). Вероятность простого события не меньше вероятности сложного; и тем не менее, когда такое простое событие наступает, мы не согласимся приписать его случайности; мы не захотим верить, что природа умышленно ввела нас в заблуждение. Устраняя гипотезу о возможности заблуждений такого рода, мы можем признать, что, поскольку дело касается астрономии, наш закон был проверен на опыте.
Но астрономия еще не составляет всей физики. Не можем ли мы опасаться, что какой-нибудь новый опыт когда-нибудь обнаружит несостоятельность закона в том или другом отделе физики? Экспериментальный закон всегда подвержен пересмотру; мы всегда должны быть готовы к тому, что он может быть заменен другим законом, более точным.
Однако никто не выражает серьезных опасений, что закон, о котором идет речь, когда-нибудь придется отклонить или исправить. Почему же? Именно потому, что его никогда нельзя будет подвергнуть решающему испытанию.
Прежде всего, для полноты такого испытания было бы необходимо, чтобы по истечении известного времени все тела Вселенной вернулись вновь к своим начальным положениям и к своим начальным скоростям. Тогда мы увидели бы, примут ли они с этого момента вновь те траектории, по которым они уже следовали один раз.
Но такое испытание невозможно: его можно осуществить только в отдельных частях и при этом всегда будут тела, которые не вернутся к своему начальному положению; таким образом, всякое нарушение этого закона легко найдет себе объяснение.
Но это не все: в астрономии мы видим тела, движения которых изучаем, и мы в большинстве случаев допускаем, что они не подвержены действию других тел, которых мы не видим. Таковы те условия, в которых проверяется наш закон.
В физике дело обстоит не совсем так: если в основе физических явлений и лежит движение, то это – движение молекул, которых мы не видим. В таком случае, если ускорение одного из видимых тел представится нам зависящим от чего-то иного, кроме положений или скоростей других видимых тел или невидимых молекул, существование которых мы должны были допустить раньше, то ничто не помешает нам допустить, что это что-то иное есть положение или скорость других молекул, присутствия коих мы до сих пор не подозревали. Закон окажется спасенным.
Я позволю себе на минуту воспользоваться математическим языком, чтобы выразить ту же мысль в иной форме. Я допускаю, что мы наблюдаем n молекул и констатируем, что их 3n координат удовлетворяют системе 3n дифференциальных уравнений четвертого порядка (не второго, как того требовал бы закон инерции). Мы знаем, что, вводя 3n вспомогательных переменных, мы можем свести систему 3n уравнений четвертого порядка к системе 6n уравнений второго порядка. Тогда стоит допустить, что эти 3n вспомогательных переменных представляют координаты n невидимых молекул, и результат снова окажется в согласии с законом инерции.