Полная версия
PANN: Новая Технология Искусственного Интеллекта. Учебное пособие
Мы описали распознавание имиджей и формирования поисковых индексов с использованием коэффициентов сходства, получаемых через произведения матриц имиджей. Но это не единственный вариант, возможный в PANN. Мы проверили также другие возможности, в частности, распознавание через:
1. Матричные произведения входного и сравниваемого массивов на массив, представляющий «стандарт сравнения» [Xst] и вычисление CoS через разность полученных матричных сумм.
2. Характеристические суммы двух массивов и вычисление CoS через разность спектров мощностей сигналов входного и сравниваемого массивов.
3. Преобразование Фурье амплитудно-частотных спектров входного и сравниваемого массивов и вычисление CoS через разность или соотношение гармоник одноименных строк BCF-формата.
Разные виды распознавания могут использоваться совместно для повышения точности и достоверности окончательного заключения.
2.5. БИБЛИОТЕКИ СРАВНЕНИЯ КАК ОСНОВА РАСПОЗНАВАНИЯ
Распознавание в сетях PANN аналогично распознаванию в биологическом мозге.
Человеческая память – это обширная библиотека, в которой лежит множество самых разных объектов и связанной с этими объектами информации. При этом многие объекты связаны прямо или косвенно друг с другом ассоциативными связями. Увидев некоторый объект, мы его сравниваем с образами в нашей памяти и так распознаем, например, как собаку, дом или автомобиль. И когда мы распознали объект и вспомнили его наиболее близкие аналоги, мы получаем возможность переносить информацию с аналогов на данный объект. Так мы получаем дополнительные знания об объекте, осознаем возможности его использования или защиты от него и т. п.
Аналогично работает и сеть PANN. В памяти компьютера формируются библиотеки сравнения, и распознавание производится путем сопоставления полученной информации с той информацией, которая лежит в этих библиотеках по степени схожести, определяемой по коэффициентам сходства.
Библиотеки сравнения PANN состоят из «единиц памяти», причем:
1. Каждая «единица памяти» представляет собой некоторую числовую последовательность, которая может быть записана в графических или текстовых форматах или в формате BCF, разработанном специально для PANN.
2. Каждая «единица памяти» может быть снабжена своими индексами (общими и частными, по разным деталям) для быстрого поиска сетью PANN информации в библиотеках.
3. Каждая «единица памяти» имеет сложное строение, содержит данные о разных параметрах и свойствах объекта. Например, я сказал «самолет», и в моей памяти всплыло множество виденных в натуре или на картинках самолетов, знания об их конструкции, применении; проблемы, которые мы решали для компаний «Сухой» и «Миля» в России и «Боинг» в США и т. п.
4. Каждая «единица памяти» имеет ассоциативные, программные, гипертекстовые и т. п. связи со многими другими «единицами памяти». Например, самолет у меня лично ассоциируется с резиномоторной моделью, которую построил в детстве; со случаем, когда чуть не попал в авиационную аварию; с неограниченным количеством спиртного, которое давали в трансконтинентальных рейсах в прошлом веке; с террористической атакой 11 сентября 2001 г. и т. п.
5. Также «единица памяти» может хранить важные дополнительные сведения, в том числе приводящие к пониманию процесса, эмоциональному к нему отношению, оценке его полезности, вредности, рисков и т. п.
Рис. 10. Единица ассоциативной памяти
Библиотека памяти обеспечивает идентификацию некоторого объекта, выявление близких аналогов или объектов-антагонистов на основе идентификации, возможность переноса на идентифицированный объект информации, связанной с найденными аналогами.
Каждая новая идентифицированная «единица памяти» может включаться в библиотеки сравнения, и таким образом можно постоянно доучивать PANN.
2.6. ФОРМИРОВАНИЕ НЕЙРОННОЙ СЕТИ
НА ОСНОВЕ НЕЙРОНОВ PROGRESS
Новые уникальные возможности при формировании нейронной сети.
В классических нейронных сетях первым шагом работы является формирование структуры сети из «пустых», необученных нейронов и формированию на синапсах случайного набора весов. И только после этого начинается обучение подготовленной сети.
В PANN совершенно другая ситуация: можно по отдельности учить любое количество нейронов; учить нейроны группами по пять, десять, сотням или тысячам нейронов или готовить целые библиотеки в формате BCF. А потом просто объединить все, что нужно, и таким образом получить единую сеть.
Существует множество разных схем и структур классических нейронных сетей, многие из них без труда можно воспроизвести с применением формального нейрона Progress. Рассмотрим сходства и различия классического персептрона с сетью PANN.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «Литрес».
Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.