Полная версия
Contributions to the Theory of Natural Selection
The desert birds are still more remarkably protected by their assimilative hues. The stonechats, the larks, the quails, the goatsuckers and the grouse, which abound in the North African and Asiatic deserts, are all tinted and mottled so as to resemble with wonderful accuracy the average colour and aspect of the soil in the district they inhabit. The Rev. H. Tristram, in his account of the ornithology of North Africa in the 1st volume of the “Ibis,” says: “In the desert, where neither trees, brush-wood, nor even undulation of the surface afford the slightest protection to its foes, a modification of colour which shall be assimilated to that of the surrounding country, is absolutely necessary. Hence without exception the upper plumage of every bird, whether lark, chat, sylvain, or sand-grouse, and also the fur of all the smaller mammals, and the skin of all the snakes and lizards, is of one uniform isabelline or sand colour.” After the testimony of so able an observer it is unnecessary to adduce further examples of the protective colours of desert animals.
Almost equally striking are the cases of arctic animals possessing the white colour that best conceals them upon snowfields and icebergs. The polar bear is the only bear that is white, and it lives constantly among snow and ice. The arctic fox, the ermine and the alpine hare change to white in winter only, because in summer white would be more conspicuous than any other colour, and therefore a danger rather than a protection; but the American polar hare, inhabiting regions of almost perpetual snow, is white all the year round. Other animals inhabiting the same Northern regions do not, however, change colour. The sable is a good example, for throughout the severity of a Siberian winter it retains its rich brown fur. But its habits are such that it does not need the protection of colour, for it is said to be able to subsist on fruits and berries in winter, and to be so active upon the trees as to catch small birds among the branches. So also the woodchuck of Canada has a dark-brown fur; but then it lives in burrows and frequents river banks, catching fish and small animals that live in or near the water.
Among birds, the ptarmigan is a fine example of protective colouring. Its summer plumage so exactly harmonizes with the lichen-coloured stones among which it delights to sit, that a person may walk through a flock of them without seeing a single bird; while in winter its white plumage is an almost equal protection. The snow-bunting, the jer-falcon, and the snowy owl are also white-coloured birds inhabiting the arctic regions, and there can be little doubt but that their colouring is to some extent protective.
Nocturnal animals supply us with equally good illustrations. Mice, rats, bats, and moles possess the least conspicuous of hues, and must be quite invisible at times when any light colour would be instantly seen. Owls and goatsuckers are of those dark mottled tints that will assimilate with bark and lichen, and thus protect them during the day, and at the same time be inconspicuous in the dusk.
It is only in the tropics, among forests which never lose their foliage, that we find whole groups of birds whose chief colour is green. The parrots are the most striking example, but we have also a group of green pigeons in the East; and the barbets, leaf-thrushes, bee-eaters, white-eyes, turacos, and several smaller groups, have so much green in their plumage as to tend greatly to conceal them among the foliage.
Special Modifications of Colour
The conformity of tint which has been so far shown to exist between animals and their habitations is of a somewhat general character; we will now consider the cases of more special adaptation. If the lion is enabled by his sandy colour readily to conceal himself by merely crouching down upon the desert, how, it may be asked, do the elegant markings of the tiger, the jaguar, and the other large cats agree with this theory? We reply that these are generally cases of more or less special adaptation. The tiger is a jungle animal, and hides himself among tufts of grass or of bamboos, and in these positions the vertical stripes with which his body is adorned must so assimilate with the vertical stems of the bamboo, as to assist greatly in concealing him from his approaching prey. How remarkable it is that besides the lion and tiger, almost all the other large cats are arboreal in their habits, and almost all have ocellated or spotted skins, which must certainly tend to blend them with the background of foliage; while the one exception, the puma, has an ashy brown uniform fur, and has the habit of clinging so closely to a limb of a tree while waiting for his prey to pass beneath as to be hardly distinguishable from the bark.
Among birds, the ptarmigan, already mentioned, must be considered a remarkable case of special adaptation. Another is a South-American goatsucker (Caprimulgus rupestris) which rests in the bright sunshine on little bare rocky islets in the Upper Rio Negro, where its unusually light colours so closely resemble those of the rock and sand, that it can scarcely be detected till trodden upon.
The Duke of Argyll, in his “Reign of Law,” has pointed out the admirable adaptation of the colours of the woodcock to its protection. The various browns and yellows and pale ash-colour that occur in fallen leaves are all reproduced in its plumage, so that when according to its habit it rests upon the ground under trees, it is almost impossible to detect it. In snipes the colours are modified so as to be equally in harmony with the prevalent forms and colours of marshy vegetation. Mr. J. M. Lester, in a paper read before the Rugby School Natural History Society, observes:—“The wood-dove, when perched amongst the branches of its favourite fir, is scarcely discernible; whereas, were it among some lighter foliage, the blue and purple tints in its plumage would far sooner betray it. The robin redbreast too, although it might be thought that the red on its breast made it much easier to be seen, is in reality not at all endangered by it, since it generally contrives to get among some russet or yellow fading leaves, where the red matches very well with the autumn tints, and the brown of the rest of the body with the bare branches.”
Reptiles offer us many similar examples. The most arboreal lizards, the iguanas, are as green as the leaves they feed upon, and the slender whip-snakes are rendered almost invisible as they glide among the foliage by a similar colouration. How difficult it is sometimes to catch sight of the little green tree-frogs sitting on the leaves of a small plant enclosed in a glass case in the Zoological Gardens; yet how much better concealed must they be among the fresh green damp foliage of a marshy forest. There is a North-American frog found on lichen-covered rocks and walls, which is so coloured as exactly to resemble them, and as long as it remains quiet would certainly escape detection. Some of the geckos which cling motionless on the trunks of trees in the tropics, are of such curiously marbled colours as to match exactly with the bark they rest upon.
In every part of the tropics there are tree-snakes that twist among boughs and shrubs, or lie coiled up on the dense masses of foliage. These are of many distinct groups, and comprise both venomous and harmless genera; but almost all of them are of a beautiful green colour, sometimes more or less adorned with white or dusky bands and spots. There can be little doubt that this colour is doubly useful to them, since it will tend to conceal them from their enemies, and will lead their prey to approach them unconscious of danger. Dr. Gunther informs me that there is only one genus of true arboreal snakes (Dipsas) whose colours are rarely green, but are of various shades of black, brown, and olive, and these are all nocturnal reptiles, and there can be little doubt conceal themselves during the day in holes, so that the green protective tint would be useless to them, and they accordingly retain the more usual reptilian hues.
Fishes present similar instances. Many flat fish, as for example the flounder and the skate, are exactly the colour of the gravel or sand on which they habitually rest. Among the marine flower gardens of an Eastern coral reef the fishes present every variety of gorgeous colour, while the river fish even of the tropics rarely if ever have gay or conspicuous markings. A very curious case of this kind of adaptation occurs in the sea-horses (Hippocampus) of Australia, some of which bear long foliaceous appendages resembling seaweed, and are of a brilliant red colour; and they are known to live among seaweed of the same hue, so that when at rest they must be quite invisible. There are now in the aquarium of the Zoological Society some slender green pipe-fish which fasten themselves to any object at the bottom by their prehensile tails, and float about with the current, looking exactly like some simple cylindrical algæ.
It is, however, in the insect world that this principle of the adaptation of animals to their environment is most fully and strikingly developed. In order to understand how general this is, it is necessary to enter somewhat into details, as we shall thereby be better able to appreciate the significance of the still more remarkable phenomena we shall presently have to discuss. It seems to be in proportion to their sluggish motions or the absence of other means of defence, that insects possess the protective colouring. In the tropics there are thousands of species of insects which rest during the day clinging to the bark of dead or fallen trees; and the greater portion of these are delicately mottled with gray and brown tints, which though symmetrically disposed and infinitely varied, yet blend so completely with the usual colours of the bark, that at two or three feet distance they are quite undistinguishable. In some cases a species is known to frequent only one species of tree. This is the case with the common South American long-horned beetle (Onychocerus scorpio) which, Mr. Bates informed me, is found only on a rough-barked tree, called Tapiribá, on the Amazon. It is very abundant, but so exactly does it resemble the bark in colour and rugosity, and so closely does it cling to the branches, that until it moves it is absolutely invisible! An allied species (O. concentricus) is found only at Pará, on a distinct species of tree, the bark of which it resembles with equal accuracy. Both these insects are abundant, and we may fairly conclude that the protection they derive from this strange concealment is at least one of the causes that enable the race to flourish.
Many of the species of Cicindela, or tiger beetle, will illustrate this mode of protection. Our common Cicindela campestris frequents grassy banks, and is of a beautiful green colour, while C. maritima, which is found only on sandy sea-shores, is of a pale bronzy yellow, so as to be almost invisible. A great number of the species found by myself in the Malay islands are similarly protected. The beautiful Cicindela gloriosa, of a very deep velvety green colour, was only taken upon wet mossy stones in the bed of a mountain stream, where it was with the greatest difficulty detected. A large brown species (C. heros) was found chiefly on dead leaves in forest paths; and one which was never seen except on the wet mud of salt marshes was of a glossy olive so exactly the colour of the mud as only to be distinguished when the sun shone, by its shadow! Where the sandy beach was coralline and nearly white, I found a very pale Cicindela; wherever it was volcanic and black, a dark species of the same genus was sure to be met with.
There are in the East small beetles of the family Buprestidæ which generally rest on the midrib of a leaf, and the naturalist often hesitates before picking them off, so closely do they resemble pieces of bird’s dung. Kirby and Spence mention the small beetle Onthophilus sulcatus as being like the seed of an umbelliferous plant; and another small weevil, which is much persecuted by predatory beetles of the genus Harpalus, is of the exact colour of loamy soil, and was found to be particularly abundant in loam pits. Mr. Bates mentions a small beetle (Chlamys pilula) which was undistinguishable by the eye from the dung of caterpillars, while some of the Cassidæ, from their hemispherical forms and pearly gold colour, resemble glittering dew-drops upon the leaves.
A number of our small brown and speckled weevils at the approach of any object roll off the leaf they are sitting on, at the same time drawing in their legs and antennæ, which fit so perfectly into cavities for their reception that the insect becomes a mere oval brownish lump, which it is hopeless to look for among the similarly coloured little stones and earth pellets among which it lies motionless.
The distribution of colour in butterflies and moths respectively is very instructive from this point of view. The former have all their brilliant colouring on the upper surface of all four wings, while the under surface is almost always soberly coloured, and often very dark and obscure. The moths on the contrary have generally their chief colour on the hind wings only, the upper wings being of dull, sombre, and often imitative tints, and these generally conceal the hind wings when the insects are in repose. This arrangement of the colours is therefore eminently protective, because the butterfly always rests with his wings raised so as to conceal the dangerous brilliancy of his upper surface. It is probable that if we watched their habits sufficiently we should find the under surface of the wings of butterflies very frequently imitative and protective. Mr. T. W. Wood has pointed out that the little orange-tip butterfly often rests in the evening on the green and white flower heads of an umbelliferous plant, and that when observed in this position the beautiful green and white mottling of the under surface completely assimilates with the flower heads and renders the creature very difficult to be seen. It is probable that the rich dark colouring of the under side of our peacock, tortoiseshell, and red-admiral butterflies answers a similar purpose.
Two curious South American butterflies that always settle on the trunks of trees (Gynecia dirce and Callizona acesta) have the under surface curiously striped and mottled, and when viewed obliquely must closely assimilate with the appearance of the furrowed bark of many kinds of trees. But the most wonderful and undoubted case of protective resemblance in a butterfly which I have ever seen, is that of the common Indian Kallima inachis, and its Malayan ally, Kallima paralekta. The upper surface of these insects is very striking and showy, as they are of a large size, and are adorned with a broad band of rich orange on a deep bluish ground. The under side is very variable in colour, so that out of fifty specimens no two can be found exactly alike, but every one of them will be of some shade of ash or brown or ochre, such as are found among dead, dry, or decaying leaves. The apex of the upper wings is produced into an acute point, a very common form in the leaves of tropical shrubs and trees, and the lower wings are also produced into a short narrow tail. Between these two points runs a dark curved line exactly representing the midrib of a leaf, and from this radiate on each side a few oblique lines, which serve to indicate the lateral veins of a leaf. These marks are more clearly seen on the outer portion of the base of the wings, and on the inner side towards the middle and apex, and it is very curious to observe how the usual marginal and transverse striæ of the group are here modified and strengthened so as to become adapted for an imitation of the venation of a leaf. We come now to a still more extraordinary part of the imitation, for we find representations of leaves in every stage of decay, variously blotched and mildewed and pierced with holes, and in many cases irregularly covered with powdery black dots gathered into patches and spots, so closely resembling the various kinds of minute fungi that grow on dead leaves that it is impossible to avoid thinking at first sight that the butterflies themselves have been attacked by real fungi.
But this resemblance, close as it is, would be of little use if the habits of the insect did not accord with it. If the butterfly sat upon leaves or upon flowers, or opened its wings so as to expose the upper surface, or exposed and moved its head and antennæ as many other butterflies do, its disguise would be of little avail. We might be sure, however, from the analogy of many other cases, that the habits of the insect are such as still further to aid its deceptive garb; but we are not obliged to make any such supposition, since I myself had the good fortune to observe scores of Kallima paralekta, in Sumatra, and to capture many of them, and can vouch for the accuracy of the following details. These butterflies frequent dry forests and fly very swiftly. They were never seen to settle on a flower or a green leaf, but were many times lost sight of in a bush or tree of dead leaves. On such occasions they were generally searched for in vain, for while gazing intently at the very spot where one had disappeared, it would often suddenly dart out, and again vanish twenty or fifty yards further on. On one or two occasions the insect was detected reposing, and it could then be seen how completely it assimilates itself to the surrounding leaves. It sits on a nearly upright twig, the wings fitting closely back to back, concealing the antennæ and head, which are drawn up between their bases. The little tails of the hind wing touch the branch, and form a perfect stalk to the leaf, which is supported in its place by the claws of the middle pair of feet, which are slender and inconspicuous. The irregular outline of the wings gives exactly the perspective effect of a shrivelled leaf. We thus have size, colour, form, markings, and habits, all combining together to produce a disguise which may be said to be absolutely perfect; and the protection which it affords is sufficiently indicated by the abundance of the individuals that possess it.
The Rev. Joseph Greene has called attention to the striking harmony between the colours of those British moths which are on the wing in autumn and winter, and the prevailing tints of nature at those seasons. In autumn various shades of yellow and brown prevail, and he shows that out of fifty-two species that fly at this season, no less than forty-two are of corresponding colours. Orgyia antiqua, O. gonostigma, the genera Xanthia, Glæa, and Ennomos are examples. In winter, gray and silvery tints prevail, and the genus Chematobia and several species of Hybernia which fly during this season are of corresponding hues. No doubt if the habits of moths in a state of nature were more closely observed, we should find many cases of special protective resemblance. A few such have already been noticed. Agriopis aprilina, Acronycta psi, and many other moths which rest during the day on the north side of the trunks of trees can with difficulty be distinguished from the grey and green lichens that cover them. The lappet moth (Gastropacha querci) closely resembles both in shape and colour a brown dry leaf; and the well-known buff-tip moth, when at rest is like the broken end of a lichen-covered branch. There are some of the small moths which exactly resemble the dung of birds dropped on leaves, and on this point Mr. A. Sidgwick, in a paper read before the Rugby School Natural History Society, gives the following original observation:—“I myself have more than once mistaken Cilix compressa, a little white and grey moth, for a piece of bird’s dung dropped upon a leaf, and vice versâ the dung for the moth. Bryophila Glandifera and Perla are the very image of the mortar walls on which they rest; and only this summer, in Switzerland, I amused myself for some time in watching a moth, probably Larentia tripunctaria, fluttering about quite close to me, and then alighting on a wall of the stone of the district which it so exactly matched as to be quite invisible a couple of yards off.” There are probably hosts of these resemblances which have not been observed, owing to the difficulty of finding many of the species in their stations of natural repose. Caterpillars are also similarly protected. Many exactly resemble in tint the leaves they feed upon; others are like little brown twigs, and many are so strangely marked or humped, that when motionless they can hardly be taken to be living creatures at all. Mr. Andrew Murray has remarked how closely the larva of the peacock moth (Saturnia pavonia-minor) harmonizes in its ground colour with that of the young buds of heather on which it feeds, and that the pink spots with which it is decorated correspond with the flowers and flower-buds of the same plant.
The whole order of Orthoptera, grasshoppers, locusts, crickets, &c., are protected by their colours harmonizing with that of the vegetation or the soil on which they live, and in no other group have we such striking examples of special resemblance. Most of the tropical Mantidæ and Locustidæ are of the exact tint of the leaves on which they habitually repose, and many of them in addition have the veinings of their wings modified so as exactly to imitate that of a leaf. This is carried to the furthest possible extent in the wonderful genus, Phyllium, the “walking leaf,” in which not only are the wings perfect imitations of leaves in every detail, but the thorax and legs are flat, dilated, and leaf-like; so that when tho living insect is resting among the foliage on which it feeds, the closest observation is often unable to distinguish between the animal and the vegetable.
The whole family of the Phasmidæ, or spectres, to which this insect belongs, is more or less imitative, and a great number of the species are called “walking-stick insects,” from their singular resemblance to twigs and branches. Some of these are a foot long and as thick as one’s finger, and their whole colouring, form, rugosity, and the arrangement of the head, legs, and antennæ, are such as to render them absolutely identical in appearance with dead sticks. They hang loosely about shrubs in the forest, and have the extraordinary habit of stretching out their legs unsymmetrically, so as to render the deception more complete. One of these creatures obtained by myself in Borneo (Ceroxylus laceratus) was covered over with foliaceous excrescences of a clear olive green colour, so as exactly to resemble a stick grown over by a creeping moss or jungermannia. The Dyak who brought it me assured me it was grown over with moss although alive, and it was only after a most minute examination that I could convince myself it was not so.
We need not adduce any more examples to show how important are the details of form and of colouring in animals, and that their very existence may often depend upon their being by these means concealed from their enemies. This kind of protection is found apparently in every class and order, for it has been noticed wherever we can obtain sufficient knowledge of the details of an animal’s life-history. It varies in degree, from the mere absence of conspicuous colour or a general harmony with the prevailing tints of nature, up to such a minute and detailed resemblance to inorganic or vegetable structures as to realize the talisman of the fairy tale, and to give its possessor the power of rendering itself invisible.
Theory of Protective Colouring
We will now endeavour to show how these wonderful resemblances have most probably been brought about. Returning to the higher animals, let us consider the remarkable fact of the rarity of white colouring in the mammalia or birds of the temperate or tropical zones in a state of nature. There is not a single white land-bird or quadruped in Europe, except the few arctic or alpine species, to which white is a protective colour. Yet in many of these creatures there seems to be no inherent tendency to avoid white, for directly they are domesticated white varieties arise, and appear to thrive as well as others. We have white mice and rats, white cats, horses, dogs, and cattle, white poultry, pigeons, turkeys, and ducks, and white rabbits. Some of these animals have been domesticated for a long period, others only for a few centuries; but in almost every case in which an animal has been thoroughly domesticated, parti-coloured and white varieties are produced and become permanent.
It is also well known that animals in a state of nature produce white varieties occasionally. Blackbirds, starlings, and crows are occasionally seen white, as well as elephants, deer, tigers, hares, moles, and many other animals; but in no case is a permanent white race produced. Now there are no statistics to show that the normal-coloured parents produce white offspring oftener under domestication than in a state of nature, and we have no right to make such an assumption if the facts can be accounted for without it. But if the colours of animals do really, in the various instances already adduced, serve for their concealment and preservation, then white or any other conspicuous colour must be hurtful, and must in most cases shorten an animal’s life. A white rabbit would be more surely the prey of hawk or buzzard, and the white mole, or field mouse, could not long escape from the vigilant owl. So, also, any deviation from those tints best adapted to conceal a carnivorous animal would render the pursuit of its prey much more difficult, would place it at a disadvantage among its fellows, and in a time of scarcity would probably cause it to starve to death. On the other hand, if an animal spreads from a temperate into an arctic district, the conditions are changed. During a large portion of the year, and just when the struggle for existence is most severe, white is the prevailing tint of nature, and dark colours will be the most conspicuous. The white varieties will now have an advantage; they will escape from their enemies or will secure food, while their brown companions will be devoured or will starve; and as “like produces like” is the established rule in nature, the white race will become permanently established, and dark varieties, when they occasionally appear, will soon die out from their want of adaptation to their environment. In each case the fittest will survive, and a race will be eventually produced adapted to the conditions in which it lives.