От пробирки до кастрюли: Как ученые разрабатывают продукты, которые мы едим каждый день
От пробирки до кастрюли: Как ученые разрабатывают продукты, которые мы едим каждый день

Полная версия

От пробирки до кастрюли: Как ученые разрабатывают продукты, которые мы едим каждый день

Язык: Русский
Год издания: 2026
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
2 из 6

Рис. 3. Агробактериальная трансформация растений


С помощью агробактериальной трансформации, например, швейцарец Инго Потрикус и немец Питер Бейер в 1999 г. создали «золотой рис», богатый предшественником витамина А – бета-каротином[9]. По их замыслу, этот улучшенный злак должен был помочь в борьбе со слепотой в странах третьего мира, где рис составляет основу рациона населения. Впоследствии сорт был доработан в сотрудничестве с химическим гигантом Syngenta (сейчас принадлежит китайскому холдингу Sinochem). Чужеродные гены нарциссов в нем были заменены на гены кукурузы, а концентрация витаминов стала еще выше. Узнать «золотой рис» легко, он отличается от обычного ярко-оранжевым цветом. Выращивают его пока только на Филиппинах[10].

Методы доставки генов в растения все время дорабатывают. Например, более новый и более быстрый – с использованием растительных вирусов. Для этого в их геном помещают нужные ученым гены, лишают вирусы некоторых способностей, чтобы не нанести растению вред, и только после этого заражают ими зеленого подопытного[11]. Вирусный геном начинает встраиваться в ДНК хозяина, а вместе с ним встраивается и «посылка» в виде собранной биологом последовательности нуклеотидов. Некоторые современные вакцины, включая первую в мире вакцину против коронавируса SARS-CoV–2 (это он вызвал злосчастную пандемию в 2020–2022 гг.), созданную в российском Исследовательском центре имени Н. Ф. Гамалеи, действуют схожим образом. Разница лишь в том, что аденовирус, выбранный медиками вакцинным почтальоном, в ДНК человека встроиться не может, а вот доставить нужный ген для выработки коронавирусного белка – пожалуйста. В ответ на этот белок клетки уже сами производят антитела, благодаря чему вакцина и работает.

Точное редактирование

Когда генетически измененным рисом стало трудно кого-либо удивить, биологи начали экспериментировать с точным редактированием генома, которое позволило бы настраивать свойства растений с большей эффективностью. Плазмида – это отлично, но как сделать так, чтобы ген встраивался в ДНК в точно заданном месте или в гене происходило только какое-то маленькое изменение? Вообще говоря, добиться этого не так-то просто. Для этого нужно уметь расщеплять и соединять молекулы ДНК не где попало, а в спланированных местах.

С этой целью сперва использовались специально синтезированные нуклеазы – ферменты, которые прикреплялись к ДНК-цепи в нужном месте, а потом разрезали ее (про ферменты и их значение для пищевой отрасли мы поговорим подробнее в главах 3 и 4, а сейчас скажем только, что это белки, ускоряющие различные химические реакции в живых организмах). Однако они нередко делали ошибки, вшивая чужеродные гены не по адресу. Нуклеазный сайт-направленный мутагенез, таким образом, был неидеален.

И вот наконец в 2012–2013 гг. научный мир взорвался, когда на базе еще одного бактериального феномена генетиками была создана технология CRISPR/Cas9. Пришедшая вместе с ней возможность вносить в геном контролируемые изменения с небывалой до этого точностью стала настоящим прорывом и повлекла за собой глобальные преобразования как в медицине, так и в селекции (рис. 4).


Рис. 4. Развитие генетики и эволюция методов редактирования растительного генома

CRISPR/Cas: как бактерии научили биологов разрезать ДНК

Все началось даже не с бактерий, а с архей – одноклеточных организмов, которые похожи на бактерии, но имеют свою эволюционную историю. Как и у бактерий, у них нет ядра, а сами они такие же маленькие, но некоторые другие характеристики архей принципиально отличаются, из-за чего в конце XX в. учеными было решено выделить их в отдельный домен. Особенностью архей считается их пристрастие жить в экстремальных условиях, например в горячих источниках и соленых озерах.

Итак, молодой докторант Университета Аликанте Франсиско Мохика, работая в маленьком городке в Испании, в 1989 г. нашел в ДНК микроскопических архей Haloferax mediterranei странные повторяющиеся 30-нуклеотидные фрагменты, разделенные неповторяющимися участками (спейсерами) примерно такой же длины. Его заинтересовала их функция. Он назвал эти участки CRISPR – clustered regularly interspaced short palindromic repeats – и начал искать похожие кластеры в ДНК других архей и бактерий. Оказалось, что CRISPR крайне распространены у прокариот. Они нашлись и у E.coli, и у других бактерий, включая патогенные виды. Следовательно, они зачем-то нужны.

После статей Мохики CRISPR начали изучать подробнее. Выяснили, что к повторам прилегают однотипные группы генов, назначение которых также неясно. Это были гены Cas – CRISPR-associated genes. И вот в 2003 г. Мохика совершает еще одно открытие: сравнивая последовательности в базах данных, он видит, что один из спейсеров CRISPR штамма кишечной палочки, устойчивой к бактериофагу P1, совпадает с ДНК этого самого фага. Мохика делает предположение, что CRISPR/Cas-система предназначена для борьбы с фагами, то есть имеет отношение к бактериальному приобретенному иммунитету. Тогда ученый не знал, какое значение имела эта догадка, но понимал, что наткнулся на нечто важное. Он написал новую статью, надеясь на публикацию в престижном издании. И хотя в Nature печатать его работу отказались, зато ее принял Journal of Molecular Evolution.

Параллельно с Мохикой над исследованием CRISPR/Cas работали и другие группы ученых. Уже через три года после его последней публикации появилось несколько работ, подтверждавших теорию Мохики по поводу функции загадочных палиндромов. А вот в действии CRISPR/Cas впервые проверили пищевые биотехнологи. Группа француза Филиппа Хорвата, пытаясь научиться эффективно отбирать сильные штаммы лактобактерий Streptococcus thermophilus для изготовления йогурта и сыра, показала, что стрептококки с большим количеством спейсерных участков в CRISPR лучше противостояли вирусам. Контролируя процесс, микробиологи заражали лабораторные стрептококки вирусами, тренируя тем самым их иммунную систему. Бактерии накапливали спейсеры и становились все более устойчивыми к фагам, что делало их эффективной основой для получения заквасок. «Криспризованный» таким образом йогурт вполне может стоять в вашем холодильнике. Он не содержит ГМО, бактерии в нем натуральные, просто их CRISPR/Cas-система натренирована лучше, чем у других. Можно считать, что они прошли полный курс профилактических прививок, а потому гораздо реже болеют[12].

Эта же команда первой описала механизм работы белков Cas5 и Cas9. Интерес к феномену CRISPR возрастал. До разработки эпохальной технологии модификации генов оставалось всего ничего. В следующие несколько лет было установлено, что CRISPR/Cas – программируемая нуклеазная система, где молекула РНК, считанная с CRISPR, за счет своих спейсерных участков узнает ДНК чужеродных фагов, которые уже встречались с бактерией раньше, а прикрепленный к ней Cas-белок разрезает эту вражескую ДНК (рис. 5).

Понимание того, что CRISPR/Cas можно использовать для нарезания ДНК клеток высших организмов, пришло практически мгновенно. Стартовали множественные эксперименты по ее использованию. На базе природных систем стали создавать упрощенные искусственные конструкции, включающие белок-киллер Cas9. Наконец в 2012 г. две женщины-биолога, Эмманюэль Шарпантье и Дженнифер Дудна, разработали рабочую инженерную систему CRISPR/Cas9 (через восемь лет они получат за нее Нобелевскую премию)[13], а генная инженерия преобразилась.


Рис. 5. Принцип работы защитного CRISPR/Cas-механизма бактерии при попадании в клетку бактериофага


При помощи CRISPR/Cas9 стало возможным успешно проводить все виды модификаций генома: вносить точечные мутации, встраивать, исправлять, заменять или удалять крупные ДНК-последовательности и фрагменты выбранных генов (рис. 6).

Сегодня CRISPR/Cas9 и родственные ей усовершенствованные системы применяются во множестве лабораторий и компаний. Уже опубликованы сотни результатов работ, проводимых с применением CRISPR, описаны десятки удачных экспериментов по редактированию геномов дрожжей, растений, насекомых и животных. С помощью генетических ножниц, например, были внесены точные модификации в геномы пшеницы и табака, получены новые сорта риса[14]. Больше того, на базе этой технологии уже существует первое лекарство для людей – Casgevy. Оно лечит серповидноклеточную анемию, редактируя сломанный ген в предшественниках красных стволовых телец – гемопоэтических стволовых клетках. После лечения клетки начинают производить полноценный гемоглобин вместо аномального, характерного для болезни.


Рис. 6. Виды различных воздействий, проводимых с помощью CRISPR/Cas9-конструкции


С приходом CRISPR риск неспецифического воздействия на ДНК пусть и не исчез совсем, но крайне минимизировался. Следовательно, безопасность методов генной инженерии вышла на новый уровень. Использование CRISPR/Cas не идет ни в какое сравнение с предыдущими поколениями нуклеаз, не говоря уже о ненаправленном мутагенезе или соматической гибридизации, когда клетки двух разных растений просто заставляют слипнуться, перетасовывая их гены в надежде получить удачный гибрид. Это все равно что дать одному противнику в руки пушку, а другому – пинцет.

Кроме того, что изменились сами методы редактирования генома, эволюционировал и подход к получению ГМ-продуктов. С новыми возможностями степень измененности ГМ-растений постепенно начала снижаться. Теперь далеко не все они – «франкенфуд» с генами из далеких друг от друга организмов, вроде помидоров с генами камбалы, которые в свое время наделали много шума в сети (эта разработка компании DNA Plant Technology до рынка так и не добралась, а сама компания обанкротилась)[15]. Многие ГМ-сорта включают гены из других растений, что уже не выглядит столь кощунственно, но и тут уровень вмешательства разнится. Взять, например, рис с генами кукурузы. Скрестить эти два растения невозможно, а потому перенос генов кукурузы в рис называется трансгенезом – это когда в организм переносят чужеродные для него гены, которые не могли бы оказаться в нем натуральным путем. Но часто ученые добавляют в свои сорта гены из родственных видов. Это уже организмы не трансгенные, а цисгенные. Так, в Швеции разработали картофель, не подверженный картофельной гнили благодаря встраиванию генов из диких видов картофеля, устойчивых к этому заболеванию[16]. Нередки также случаи, когда в ДНК растения вставляют копии его собственных генов или меняют не гены, а вспомогательные участки, отвечающие за активность считывания генетической информации. Это позволяет усиливать определенные признаки – например, способность накапливать витамины в листьях или, наоборот, устранять либо сводить к минимуму нежелательные свойства, такие как горечь у горчичной зелени[17].

Остаются еще общественные опасения по поводу влияния ГМ-растений на биосферу, но до сегодняшнего дня все они беспочвенны. Если следовать существующим рекомендациям, в частности не высаживать модифицированные виды в центрах происхождения их диких родственников, вытеснить другие растения из их ареалов они не смогут. Новые сорта с измененным геномом «успешны» не потому, что агрессивны или отличаются инвазивностью, а потому, что приносят пользу человеку: удобны в выращивании, питательны, неприхотливы и т. д. Поэтому, даже если зеленые ГМО и выйдут за пределы полей, они, скорее всего, просто займут свою скромную нишу наряду с другими растениями. Экологические риски при этом рассчитываются для каждого нового ГМ-сорта. Все промышленные биоинженерные растения подвергаются мониторингу, за ними долго наблюдают, проверяя, вредят ли они другим сортам и видам, насекомым или почвенным микроорганизмам. И пока результаты всех подобных экспериментов не дают повода для беспокойства[18].

К тому же сами компании, продающие ГМ-семена, совершенно не склонны выпускать их «на волю». Чтобы фермеры не могли сами запасать семенной материал и находились в зависимости от биотех-гигантов, в США при поддержке Министерства сельского хозяйства еще в 1990-е гг. была разработана технология «терминатор», или GURT – genetic use restriction technology[19]. Ее идея в том, чтобы сделать семена «одноразовыми». В их ДНК вшита последовательность-предохранитель, которая не дает привнесенным генам считываться. И вырезается эта последовательность только после обработки специфическим биологическим веществом-активатором, которое наносят на семена перед продажей. Если посадить такие растения и попытаться их размножить, плоды появятся, но особенностей генетически модифицированного сорта не сохранят. Другая разновидность GURT еще радикальнее: при ее использовании семена в растениях получаются стерильными – из них вообще ничего нельзя вырастить.

Хотя «терминатор» призван в том числе контролировать распространение генетически модифицированных посадок, на Monsanto и ее коллег в связи с GURT, когда метод только появился, обрушилось немало критики. Он был воспринят как проявление беспрецедентной жадности со стороны больших корпораций. В то же время стоит признать, что покупка обычных F1-гибридов мало чем отличается от использования «терминатора». При желании семена гибридов первого поколения можно прорастить, но, согласно второму закону Менделя, они не дадут потомков с устойчивыми сортовыми качествами: наследственные признаки расщепятся, перемешаются и результат не сможет удовлетворить ни одного растениевода.

То, что ГМО меняются и становятся все более изученными и понятными, неизбежно влияет на рынок. Постепенно даже с учетом живучести укрепившихся негативных стереотипов отношение к сельскохозяйственным ГМ-растениям на уровне правительств становится все более лояльным. При оценке безопасности новых сортов регуляторы начинают исходить не из технологии их создания, а из состава продуктов. Если в растении нет ничего вредного и оно не синтезирует несвойственных ему чужеродных белков – значит, и контролировать его не нужно. Согласно обновленному законодательству в США, Канаде, Австралии, Японии, Китае и ряде других стран к продуктам редактирования, в которые не вносились чужеродные гены, больше не применяются ограничения, актуальные для трансгенов[20]. То есть, если из генома растения всего лишь удален ненужный ген или произведена небольшая замена нуклеотидов, ГМ-растением оно не считается[21].

Где-то ослабление законов происходит быстро, где-то – медленно. В некоторых государствах, включая Россию, законы довольно строги. Выращивать ГМ-культуры в нашей стране можно только на опытных участках, а для ввоза разрешены лишь отдельные линии модифицированных растений (всего 28), среди которых кукуруза, картофель, соя, сахарная свекла и рис. Чтобы получить допуск на ввоз, сорта проходят проверку: их безопасность исследуют на крысах в течение полугода.

В результате такой разницы в запретах примерно 98% всех ГМ-растений выращивается всего в 10 странах. Этот перекос, с одной стороны, выгоден государствам, активно развивающим генетическую селекцию, а с другой – позволяет остальным регионам искать собственные точки роста. В частности, Россия, дав ГМО зеленый свет, могла бы заработать на экспорте ГМ-картофеля или пшеницы, тем более что российскими учеными уже разработан картофель, устойчивый к колорадскому жуку[22]. Но пока этого не произошло, наш рынок остается привлекательным для органик-производителей.

Эпигенетика: как повлиять на ДНК, не разрезая ее

Одним из самых молодых направлений работы для селекционеров стали подходы эпигенетики – науки об управлении работой генов[23]. Дело тут в том, что производство белков внутри клеток зависит не только от самой ДНК, но и от множества других факторов. Это значит, что свойства организмов могут меняться даже тогда, когда их ДНК остается прежней, а меняется лишь эффективность ее считывания. Конечно, ученым хочется овладеть методами такого влияния на геном. Это даст возможность получать лучшие образцы растений без изменения последовательности нуклеотидов в ДНК.

Как это работает? Представим, что вам нужно перед экзаменом повторить конспект, но времени у вас на это пять минут, не больше. За такой срок все лекции никак не прочесть, поэтому вам остается сосредоточиться на главном – на тех абзацах, что вы сами выделили маркером или красивой закладкой. Так и живая клетка производит те белки, чьи гены открыты для считывания. Только «закладками» в ее конспекте служат не цветные наклейки, а, например, метильные группы (CH3–), и отмечает она ими не самое важное, а то, что читать не нужно[24]. Когда ДНК метилируется, обзаводясь новыми «украшениями» в виде CH3-групп, фермент, отвечающий за постройку мРНК, не узнает ее и не может найти начало кода, откуда следует читать. А нет мРНК – нет и белка. Получается, что ген есть, но он как бы выключен.

Метилирование ДНК у растений и животных – вполне естественный процесс. И что интересно, он не всегда работает как выключатель. Иногда после метилирования определенных участков генома синтез белков, наоборот, резко возрастает (тогда молекулярная «закладка» работает так же, как и бумажная: помогает найти нужную строчку). Люди и это научились использовать: изменяя метилирование ДНК, можно увеличить активность генов, отвечающих за производство растением запасных белков, в том числе увеличить «белковость» зерна пшеницы. Снижение уровня метилирования приводит также к наследуемому признаку карликовости у риса. Карликовый рис хорош тем, что не прилегает к земле.

Теперь предположим, что ген у нас вполне рабочий. Но и тут совсем не обязательно его прочтение закончится синтезом белка. Как мы помним, превращение последовательности ДНК в белок – это своеобразная система двойного шифрования: на основе ДНК сперва создается молекула матричной РНК, а уже она становится образцом для сборки протеина. И вот эта матричная РНК может быть разрушена в цитоплазме клетки до того, как ею воспользуются[25]. Называют это явление посттранскрипционным молчанием (ген замолкает уже после того, как произошла транскрипция – изготовление клеткой мРНК). Эта ситуация часто возникает сама по себе, когда ученые привносят в ДНК растений дополнительные гены. ДНК меняется, но вставленный ген не работает – его продукт разрушается, не дойдя до состояния готовности. Впервые молчание генов у генетически измененных организмов описали еще в 1990 г. Тогда введение в геном петунии дополнительных генов, отвечающих за красную окраску цветков, неожиданно снизило количество красного пигмента в растении.

Казалось бы, для селекционера в этом нет никакой выгоды. Но затем выяснилось, что посттранскрипционное молчание можно использовать для создания растений, устойчивых к растительным вирусам. Тогда механизм замолкания генов будет направлен против чуждых растению вирусных мРНК. А если заставить молчать те гены, которые производят ненужные белки, получатся новые перспективные сорта. Используя механизмы разрушения мРНК, можно снизить в кофе содержание кофеина[26], а в табаке – никотина[27]. Есть и более амбициозные проекты. Например, генетики испанского Института сельского хозяйства в Кордове смогли почти полностью очистить пшеницу от глиадина – компонента глютена, из-за которого у некоторых людей возникает иммунная реакция.

Нужно сказать, что, когда биологи прибегают к посттранскрипционному молчанию, они обычно используют и CRISPR/Cas9. То есть чуть-чуть изменить ДНК растений все же приходится[28]. Например, чтобы целевая мРНК разрушалась, на нее можно натравить уже присутствующие в растениях для собственных нужд малые интерферирующие РНК. За их производство отвечают некодирующие участки генома, которые и подвергаются доработке. Как мы увидим дальше, генетики вообще любят использовать не один, а несколько инструментов сразу.

Что еще могут геномные технологии

Несмотря на то что селекция за последние 30 лет сильно изменилась, в ней используются и традиционные методы получения новых сортов или растений с нужными характеристиками. Только теперь они сосуществуют с геномными технологиями.

Взять хотя бы прививку. Это давно известный способ размножения растений, с которым повсеместно сталкиваются садоводы-любители. В ходе прививки стебель одного растения – привой – пересаживают на корень или стебель другого – подвой (рис. 7).


Рис. 7. Прививка растения


Главное – соединить части растений так, чтобы их ткани плотно прилегали друг к другу. Тогда со временем они срастутся и из нескольких разных растений получится одно.

Используют прививку чаще всего для того, чтобы объединить свойства двух разных видов. Как правило, привой от культурного растения с хорошими плодами соединяют с подвоем дикой разновидности, которая гораздо более устойчива к различным болезням и вредителям. Или, если в саду мало места, можно привить к одной яблоне ветки разных сортов и даже ветку груши. Тогда садовод будет собирать с одного дерева разные плоды.

И все же главной задачей прививки остается улучшение здоровья культурных насаждений. Так, в конце XIX в. прививка помогла сберечь европейские сорта винограда от нашествия филлоксеры – микроскопической тли, поедающей виноградные корни. Ее завезли в Европу из Северной Америки. Местные виноградари долго не могли понять, отчего страдают их хозяйства. Только в 1868 г. вредитель был установлен. Но мало было найти тлю – требовалось ее обезвредить. Тем более что нашествие филлоксеры по масштабам было нешуточное. Каждая тля может за раз отложить до 800 яиц, а за сезон насекомое воспроизводится пять-шесть раз. Выдержать такой натиск могли далеко не все, многие виноградники погибли.

Долгое время попытки бороться с филлоксерой оставались безуспешными. Не помогали ни протравление почв, ни временное затопление ферм. Отрасль испытывала большие трудности и вполне могла бы не оправиться от удара, если бы не идея привить европейский культурный виноград Vitis vinifera на дикий североамериканский – Vitis labrusca, давно знакомый с вредителем, а потому устойчивый к нему[29]. Тактика оказалась крайне эффективной и до сих пор остается единственным действенным способом избавиться от виноградной тли, не считая разве что посадок в районах с песчаными почвами. Хорошо защищены от филлоксеры не только привитые сорта, но и гибриды, имеющие виноград Vitis labrusca в родителях. Один из них, «изабелла», очень популярен в домашних хозяйствах в России и в жарких странах. Он неприхотлив и отлично растет как в холодном, так и в тропическом климате. А вот в Европе продажа вин из «изабеллы» запрещена везде, кроме Швейцарии. Официальная причина – излишнее количество токсичного метанола, накапливающееся в них в ходе брожения. Есть, однако, мнение, что правительство ЕС, запретив «изабеллу», пошло на уступки местному винодельческому лобби, которое боялось конкуренции и было заинтересовано в продвижении своих классических сортов.

Иногда результат прививки очень похож на ГМО. Например, в одной из серий мультсериала «Симпсоны» Гомер занимался разведением «томака» – генетических помидоров-мутантов, содержащих никотин[30]. При этом растения томата практически с такими же свойствами были получены в США в 2003 г. – путем прививания. Пробы показали наличие в «томаке» никотина, но не в плодах, а в листьях[31].

Казалось бы, если ДНК подвоя и привоя в ходе прививки не меняется, почему химический состав привоя может измениться? Все просто. Привой и подвой, сливаясь в единый организм, обмениваются веществами друг с другом. Поэтому, если вы привили ветку скороспелой яблони к позднеспелому сорту, срок созревания привоя может заметно сдвинуться. Не исключено, что изменятся также другие характеристики: сила роста или размер плодов.

Для прививки можно использовать и генетически измененный подвой. При этом технически плоды с таких растений не будут ГМО, ведь их ДНК останется такой же, как была, а все новые признаки не станут наследоваться при размножении семенами. Метод прижился в одном из самых востребованных направлений, где геномные технологии проявляют себя во всей красе. Это fast-track breeding, или ускоренное скрещивание.

Подходы этой категории призваны сокращать сроки селекции тех культур, цикл размножения которых чересчур долог. Только подумайте: чтобы дерево дало плоды, его нужно выращивать несколько лет[32]. Это означает, что после получения каждого гибрида селекционер вынужден годами ждать хотя бы того, чтобы можно было оценить результат работы. А если потребуется провести еще несколько последовательных скрещиваний, выведение нового сорта может занять и 30 лет.

На страницу:
2 из 6