Полная версия
Атлас искусственного интеллекта: руководство для будущего
Когда Аптон Синклер писал «Джунгли», ужасающий роман о бедности рабочего класса, действие происходило на мясокомбинатах Чикаго. Хотя он и стремился показать трудности рабочих-иммигрантов в поддержку социалистических политических взглядов, книга произвела совершенно иной эффект. Изображения зараженного и гниющего мяса вызвали общественный резонанс по поводу безопасности продуктов питания и привели к принятию в 1906 году Закона о мясной инспекции. Однако внимание к рабочим было упущено. Влиятельные институты, от мясоперерабатывающей промышленности до Конгресса, желали вмешаться, чтобы улучшить методы производства, но обращение к более фундаментальной эксплуататорской динамике труда, которая поддерживала всю систему, было запрещено. Устойчивость этой модели подчеркивает, как власть реагирует на критику: независимо от того, идет ли речь о коровьих тушах или распознавании лиц, реакция заключается в том, чтобы принять регулирование на периферии, но оставить нетронутой основную логику производства.
Разделочный этаж Armour Beef, 1952 год. Предоставлено Чикагским историческим обществом
В истории автоматизации важное место занимают две другие фигуры: Генри Форд, чья сборочная линия начала двадцатого века вдохновлена чикагскими комбинатами, и Фредерик Уинслоу Тейлор, основатель научного менеджмента. Тейлор построил свою карьеру в последние годы девятнадцатого века, разработав систематический подход к управлению рабочим местом и сосредоточившись на мельчайших движениях тела рабочих. В то время как понятие Смита и Бэббиджа о разделении труда было призвано обеспечить способ распределения работы между людьми и инструментами, Тейлор сузил фокус до микроскопических подразделений в действиях каждого работника.
Секундомер, как новейшая технология точного учета времени, должен был стать ключевым инструментом наблюдения за рабочим местом как для начальников цехов, так и для инженеров-технологов. Тейлор использовал секундомеры для проведения исследований рабочих, включающих подробную разбивку времени, затрачиваемого на выполнение отдельных физических движений, связанных с любой конкретной задачей. Его «Принципы научного управления» создали систему количественной оценки движений с целью выработки оптимально эффективного расположения инструментов и рабочих процессов. Целью был максимальный объем производства при минимальных затратах[156]. Этот подход послужил примером описания Марксом господства времени: «Время – все, человек – ничто; он, самое большее, – это оболочка времени»[157].
Foxconn, крупнейшая в мире компания по производству электроники, выпускающая смартфоны Apple iPhone и планшеты iPad, является ярким примером того, как рабочие низведены до уровня животных, выполняющих жестко контролируемые задачи. Foxconn стала печально известна своими милитаристскими подходами после серии самоубийств в 2010 году[158]. Всего два года спустя председатель совета директоров компании, Терри Гоу, описал более миллиона своих сотрудников: «Поскольку люди – это тоже животные, управление миллионным стадом вызывает у меня головную боль»[159].
Контроль времени – это еще один способ управления. В сфере обслуживания и быстрого питания время измеряется до секунды. Работники McDonald’s оцениваются по выполнению таких показателей, как пять секунд на обработку заказа с экрана, двадцать две секунды на сборку сэндвича и четырнадцать секунд на упаковку блюда[160]. Строгое следование часам лишает систему права на ошибку. Малейшая задержка (клиент слишком долго делает заказ, кофеварка не работает, сотрудник заболел) может привести к каскадному ряду задержек, предупреждающих звуков и уведомлений руководства.
Еще до того, как работники McDonald’s приступят к работе, их время уже будет управляться и отслеживаться. Алгоритмическая система планирования, включающая анализ исторических данных и модели прогнозирования спроса, определяет распределение рабочих смен, в результате чего график работы может меняться от недели к неделе и даже день ото дня. В 2014 году в коллективном иске против ресторанов McDonald’s в Калифорнии отмечалось, что франчайзи руководят программным обеспечением, которое дает алгоритмические прогнозы относительно соотношения количества сотрудников и продаж, и инструктирует менеджеров сокращать персонал, когда спрос падает[161]. Работники сообщали, что им говорили не приходить на смену, а вместо этого слоняться поблизости, чтобы быть готовыми вернуться на работу, если в ресторане начнется оживление. Поскольку работникам платят только за отработанное время, в иске утверждалось, что это было равносильно значительной краже заработной платы со стороны компании и франчайзи[162].
Алгоритмическое распределение варьируется от очень коротких смен продолжительностью в час (или меньше) до очень длинных периодов во время наплыва – все, что наиболее выгодно. Алгоритм не учитывает человеческие издержки, связанные с ожиданием или невозможностью предсказать график и спланировать жизнь. Такая кража времени помогает повысить эффективность компании, но платить за нее приходится непосредственно сотрудникам.
Управление временем, приватизация времениПредприниматель в сфере быстрого питания Рэй Крок, который помог превратить McDonald’s в глобальную франшизу, присоединился к примеру Смита, Бэббиджа, Тейлора и Форда, разработав стандартную линию сборки сэндвичей и заставил своих сотрудников бездумно ей следовать. Наблюдение, стандартизация и сокращение индивидуального труда являлись центральными пунктами в методе Крока. Как утверждают исследователи труда Клэр Мэйхью и Майкл Куинлан в отношении стандартизированного процесса McDonald’s, «фордистская система управления фиксировала работу и производственные задачи в мельчайших деталях. Она требовала постоянного документированного участия и предполагала детальный контроль над рабочим процессом каждого человека. Вся концептуальная работа была практически полностью исключена из процесса выполнения задач»[163].
Объектом пристального внимания на заводе Ford стала минимизация времени, проведенного на каждом участке, или (время цикла). Инженеры делили рабочие задачи на все более мелкие части, чтобы их можно было оптимизировать и автоматизировать, а руководители дисциплинировали рабочих, когда те отставали. Супервайзеров, и даже самого Генри Форда, часто видели с секундомером в руках, записывающими время цикла и отмечающими любые несоответствия в производительности участка[164].
Сейчас работодатели могут пассивно наблюдать за рабочей силой, не выходя на заводской цех. Вместо этого рабочие заступают на смену, приложив пропуск или сделав отпечаток пальца на считывающем устройстве, прикрепленном к электронным часам. Они работают перед хронометрами, которые показывают минуты или секунды, оставшиеся на выполнение текущего задания до уведомления менеджера. Они сидят за рабочими местами, оснащенными датчиками, которые постоянно сообщают о температуре их тела, физическом расстоянии от коллег, количестве времени, которое они тратят на просмотр веб-сайтов вместо выполнения поставленных задач, и так далее. WeWork, гигантская компания по организации рабочих пространств, которая прогорела в течение 2019 года. Компания незаметно оснастила оснастила свои рабочие места устройствами наблюдения в попытке создать новые формы монетизации данных. Ее приобретение в 2019 году стартапа Euclid, занимающегося пространственной аналитикой, вызвало обеспокоенность, поскольку предполагалось, что компания планирует отслеживать своих же клиентов во время их перемещений по зданию[165]. Domino’s Pizza добавила на свои кухни системы машинного зрения, которые проверяют готовую пиццу на соответствие с установленными стандартами[166]. Аппараты наблюдения используются с целью получения входных данных для алгоритмических систем планирования, которые в дальнейшем модулируют рабочее время; или для сбора поведенческих сигналов, способных коррелировать с признаками высокой или низкой производительности; или просто продаются брокерам данных в качестве формы инсайта.
В своем эссе «Как Кремниевая долина устанавливает время» профессор социологии Джуди Вайкман утверждает, что цели инструментов учета времени и демографический состав Кремниевой долины не случайны[167]. Элитная рабочая сила Кремниевой долины «более молодая, более работоспособная и более приверженная». Они создают инструменты производительности, которые основаны на своего рода безжалостной гонке за максимальной эффективностью[168]. Это означает, что молодые люди, в основном мужчины-инженеры, часто не обремененные семейными или общественными обязанностями, создают инструменты, которые будут контролировать совершенно разные рабочие места, количественно оценивая производительность и потенциал сотрудников. В итоге трудоголизм и круглосуточная работа, зачастую восхваляемая технологическими стартапами, становятся неявным эталоном «идеала» сотрудника.
Личное времяКоординация времени становится все более детальной в технологических формах управления рабочим пространством. Например, протокол автоматизации производства (MAP) компании General Motors стал ранней попыткой обеспечить стандартное решение общих проблем координации производственных роботов, включая синхронизацию часов[169]. Со временем появились другие, более общие протоколы синхронизации времени, которые можно было передавать по сетям ethernet и TCP/IP, включая протокол сетевого времени (NTP) и, позднее, протокол точного времени (PTP), каждый из которых породил множество конкурирующих реализаций в различных операционных системах. И NTP, и PTP функционируют путем создания иерархии часов в сети, при этом «ведущие» часы управляют «ведомыми» часами.
Метафора «хозяин-раб» или «ведущий-ведомый» пронизывает всю инженерную и вычислительную технику. Одно из самых ранних употреблений этой расистской метафоры относится к 1904 году, когда описывались астрономические часы в обсерватории Кейптауна[170]. Однако термин получил распространение только в 1960-х годах, особенно после того, как был использована в вычислительной технике, начиная с Дартмутской системы разделения времени. Математики Джон Кемени и Томас Курц разработали программу разделения времени для доступа к вычислительным ресурсам после предложения одного из первых основателей ИИ Джона Маккарти. Как они писали в журнале Science в 1968 году: «Во-первых, все вычисления пользователей происходят на ведомом компьютере, а исполнительная программа („мозг“ системы) находится на ведущем компьютере. Поэтому невозможно, чтобы ошибочная или беглая пользовательская программа на ведомом компьютере „повредила“ исполнительную программу и тем самым остановила всю систему»[171]. Проблематичный вывод о том, что управление эквивалентно интеллекту, будет продолжать формировать область ИИ в течение десятилетий. Как утверждает Рон Эглаш, эта формулировка сильно перекликается с рассуждениями о беглых рабах до Гражданской войны[172].
Терминология «хозяин-раб» была воспринята многими как оскорбительная и была удалена из Python, языка кодирования, распространенного в машинном обучении, и Github, платформы для разработки программного обеспечения. Однако она сохраняется в одной из самых обширных вычислительных инфраструктур в мире. Spanner от Google – названный так потому, что охватывает всю планету, – это массивная, глобально распределенная, синхронно реплицируемая база данных. Это инфраструктура, которая поддерживает Gmail, поиск Google, рекламу и все распределенные сервисы Google.
Функционируя по всему миру, Spanner синхронизирует время на миллионах серверов в сотнях центров обработки данных. В каждом центре есть «хозяин», который постоянно получает GPS-время. Но поскольку серверы опрашивали различные задающие генераторы, существовала небольшая задержка в сети. Как Как устранили эту неопределенность? Ответ заключался в создании нового сетевого протокола – запатентованной формы, – чтобы все серверы могли синхронизироваться независимо от того, в какой точке планеты они находятся. Google без иронии назвал этот новый протокол TrueTime.
TrueTime функционирует путем установления доверительных отношений между локальными часами центров обработки данных, чтобы они могли решать, с какими коллегами синхронизироваться. Благодаря достаточно большому количеству надежных часов, – включая GPS-приемники и атомные часы, которые обеспечивают чрезвычайно высокую степень точности, – и достаточно низким уровням сетевой задержки, TrueTime позволяет набору серверов гарантировать определенную последовательность событий в глобальной сети[173].
Самое замечательное в этой системе – это то, как TrueTime справляется с неопределенностью при наличии дрейфа на отдельных серверах. «Если неопределенность велика, Spanner замедляется, чтобы ее переждать», – объясняют исследователи Google[174]. Это воплощает фантазию о замедлении времени, о его перемещении по своему усмотрению и о приведении планеты к единому запатентованному временному коду. Если рассматривать человеческое восприятие времени как нечто изменчивое и субъективное, движущееся быстрее или медленнее в зависимости от того, где мы находимся и с кем, то это социальное восприятие времени. TrueTime – это способность создавать смещающуюся шкалу времени под контролем централизованных главных часов. Подобно тому, как Исаак Ньютон представил себе абсолютную форму времени, существующую независимо от любого воспринимающего, Google изобрел свою собственную форму универсального времени.
Собственные формы времени уже давно используются для обеспечения бесперебойной работы машин, например, ими пользовались железнодорожные магнаты в XIX веке. В Новой Англии в 1849 году все поезда должны были принимать бостонское время, указанное William Bond & Son.[175] Как документально подтвердил Питер Галисон, руководителям железных дорог не нравилось переходить на другое время в зависимости от того, в какой штат направлялись их поезда, а генеральный директор железнодорожной компании New York & New England назвал переход на другое время «неприятностью и большим неудобством, не приносящим никакой пользы»[176]. Но после того как в 1853 году в результате столкновения поездов лоб в лоб погибли четырнадцать человек, возникло огромное давление, чтобы скоординировать все часы с помощью новой технологии телеграфа.
Как и искусственный интеллект, телеграф приветствовался как объединяющая технология, способная расширить возможности человека. В 1889 году лорд Солсбери хвастался, что телеграф «собрал все человечество на одной большой плоскости»[177]
Конец ознакомительного фрагмента.
Текст предоставлен ООО «Литрес».
Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Примечания
1
Heyn, «Berlin’s Wonderful Horse.»
2
Pfungst, Clever Hans.
3
«Clever Hans’ Again.»
4
Pfungst, Clever Hans.
5
Pfungst.
6
Lapuschkin et al., «Unmasking Clever Hans Predictors.»
7
See the work of philosopher Val Plumwood on the dualisms of intelligence-stupid, emotional-rational, and master-slave. Plumwood, «Politics of Reason.»
8
Turing, «Computing Machinery and Intelligence.»
9
Von Neumann, The Computer and the Brain, 44. This approach was deeply critiqued by Dreyfus, What Computers Can’t Do.
10
See Weizenbaum, «On the Impact of the Computer on Society,» After his death, Minsky was implicated in serious allegations related to convicted pedophile and rapist Jeffrey Epstein. Minsky was one of several scientists who met with Epstein and visited his island retreat where underage girls were forced to have sex with members of Epstein’s coterie. As scholar Meredith Broussard observes, this was part of a broader culture of exclusion that became endemic in AI: «As wonderfully creative as Minsky and his cohort were, they also solidified the culture of tech as a billionaire boys’ club. Math, physics, and the other ‘hard’ sciences have never been hospitable to women and people of color; tech followed this lead.» See Broussard, Artificial Unintelligence, 174.
11
Weizenbaum, Computer Power and Human Reason, 202–3.
12
Greenberger, Management and the Computer of the Future, 315.
13
Dreyfus, Alchemy and Artificial Intelligence.
14
Dreyfus, What Computers Can’t Do.
15
Ullman, Life in Code, 136–37.
16
See, as one of many examples, Poggio et al., «Why and When Can Deep – but Not Shallow – Networks Avoid the Curse of Dimensionality.»
17
Quoted in Gill, Artificial Intelligence for Society, 3.
18
Russell and Norvig, Artificial Intelligence, 30.
19
Daston, «Cloud Physiognomy.»
20
Didi-Huberman, Atlas, 5.
21
Didi-Huberman, 11.
22
Franklin and Swenarchuk, Ursula Franklin Reader, Prelude.
23
For an account of the practices of data colonization, see «Colonized by Data»; and Mbembé, Critique of Black Reason.
24
Fei-Fei Li quoted in Gershgorn, «Data That Transformed AI Research.»
25
Russell and Norvig, Artificial Intelligence, 1.
26
Bledsoe quoted in McCorduck, Machines Who Think, 136.
27
Mattern, Code and Clay, Data and Dirt, xxxiv-xxxv.
28
Ananny and Crawford, «Seeing without Knowing.»
29
Any list will always be an inadequate account of all the people and communities who have inspired and informed this work. I’m particularly grateful to these research communities: FATE (Fairness, Accountability, Transparency and Ethics) and the Social Media Collective at Microsoft Research, the AI Now Institute at NYU, the Foundations of AI working group at the École Normale Supérieure, and the Richard von Weizsäcker Visiting Fellows at the Robert Bosch Academy in Berlin.
30
Saville, «Towards Humble Geographies.»
31
For more on crowdworkers, see Gray and Suri, Ghost Work; and Roberts, Behind the Screen.
32
Canales, Tenth of a Second.
33
Zuboff, Age of Surveillance Capitalism.
34
Cetina, Epistemic Cultures, 3.
35
«Emotion Detection and Recognition (EDR) Market Size.»
36
Nelson, Tu, and Hines, «Introduction,» 5.
37
Danowski and de Castro, Ends of the World.
38
Franklin, Real World of Technology, 5.
39
Brechin, Imperial San Francisco.
40
Brechin, 29.
41
Agricola quoted in Brechin, 25.
42
Quoted in Brechin, 50.
43
Brechin, 69.
44
See, e. g., Davies and Young, Tales from the Dark Side of the City; and «Grey Goldmine.»
45
For more on the street-level changes in San Francisco, see Bloomfield, «History of the California Historical Society’s New Mission Street Neighborhood.»
46
«Street Homelessness.» See also «Counterpoints: An Atlas of Displacement and Resistance.»
47
Gee, «San Francisco or Mumbai?»
48
H. W. Turner published a detailed geological survey of the Silver Peak area in July 1909. In beautiful prose, Turner extolled the geological variety within what he described as «slopes of cream and pink tuffs, and little hillocks of a bright brick red.» Turner, «Contribution to the Geology of the Silver Peak Quadrangle, Nevada,» 228.
49
Lambert, «Breakdown of Raw Materials in Tesla’s Batteries and Possible Breaknecks.»
50
Bullis, «Lithium-Ion Battery.»
51
«Chinese Lithium Giant Agrees to Three-Year Pact to Supply Tesla.»
52
Wald, «Tesla Is a Battery Business.»
53
Scheyder, «Tesla Expects Global Shortage.»
54
Wade, «Tesla’s Electric Cars Aren’t as Green.»
55
Business Council for Sustainable Energy, «2019 Sustainable Energy in America Factbook.» U. S. Energy Information Administration, «What Is U. S. Electricity Generation by Energy Source?»
56
Whittaker et al., AI Now Report 2018.
57
Parikka, Geology of Media, vii – viii; McLuhan, Understanding Media.
58
Ely, «Life Expectancy of Electronics.»
59
Sandro Mezzadra and Brett Neilson use the term «extractivism» to name the relation between different forms of extractive operations in contemporary capitalism, which we see repeated in the context of the AI industry. Mezzadra and Neilson, «Multiple Frontiers of Extraction.»
60
Nassar et al., «Evaluating the Mineral Commodity Supply Risk of the US Manufacturing Sector.»
61
Mumford, Technics and Civilization, 74.
62
See, e. g., Ayogu and Lewis, «Conflict Minerals.»
63
Burke, «Congo Violence Fuels Fears of Return to 90s Bloodbath.»
64
«Congo ’s Bloody Coltan.»
65
«Congo ’s Bloody Coltan.»
66
«Transforming Intel’s Supply Chain with Real-Time Analytics.»
67
See, e. g., an open letter from seventy signatories that criticizes the limitations of the so-called conflict-free certification process: «An Open Letter.»
68
«Responsible Minerals Policy and Due Diligence.»
69
In The Elements of Power, David S. Abraham describes the invisible networks of rare metals traders in global electronics supply chains: «The network to get rare metals from the mine to your laptop travels through a murky network of traders, processors, and component manufacturers. Traders are the middlemen who do more than buy and sell rare metals: they help to regulate information and are the hidden link that helps in navigating the network between metals plants and the components in our laptops» [89].
70
«Responsible Minerals Sourcing.»
71
Liu, «Chinese Mining Dump.»
72
«Bayan Obo Deposit.»
73
Maughan, «Dystopian Lake Filled by the World’s Tech Lust.»
74
Hird, «Waste, Landfills, and an Environmental Ethics of Vulnerability,» 105.
75
Abraham, Elements of Power, 175.
76
Abraham, 176.
77
Simpson, «Deadly Tin Inside Your Smartphone.»
78
Hodal, «Death Metal.»
79
Hodal.
80
Tully, «Victorian Ecological Disaster.»
81
Starosielski, Undersea Network, 34.
82
See Couldry and Mejías, Costs of Connection, 46.
83
Couldry and Mejías, 574.
84
For a superb account of the history of undersea cables, see Starosielski, Undersea Network.
85
Dryer, «Designing Certainty,» 45.
86
Dryer, 46.
87
Dryer, 266-68.
88
More people are now drawing attention to this problem – including researchers at AI Now. See Dobbe and Whittaker, «AI and Climate Change.»
89
See, as an example of early scholarship in this area, Ensmenger, «Computation, Materiality, and the Global Environment.»
90
Hu, Prehistory of the Cloud, 146.
91
Jones, «How to Stop Data Centres from Gobbling Up the World’s Electricity.» Some progress has been made toward mitigating these concerns through greater energy efficiency practices, but significant long-term challenges remain. Masanet et al., «Recalibrating Global Data Center Energy – Use Estimates.»