
Полная версия
Сто лет недосказанности: Квантовая механика для всех в 25 эссе
28
Нобелевскую премию 1964 г. «за фундаментальные работы в области квантовой электроники, приведшие к созданию генераторов и усилителей на основе принципа мазера-лазера» получили Басов, Прохоров и Таунс.
29
Из теоретических соображений Эйнштейн сознавал, что фотоны не могли быть в полной мере статистически независимы друг от друга, как молекулы в обычном (классическом) газе. Бозе точно выразил такую зависимость в своей статье, которую, однако, не приняли к публикации в журнале, поэтому Бозе прислал ее Эйнштейну для возможной публикации в другом издании после перевода на немецкий, если она окажется заслуживающей внимания. Эйнштейн оценил идею, перевел статью на немецкий и отправил в журнал с короткой припиской от себя, а тем временем понял, что идея приложима шире, не только к фотонам, но и к собранию одинаковых частиц любой массы, главное статистическое свойство которых – принципиальная неразличимость вместе с некоторой склонностью к «коллективизму» (сейчас это описывается как принадлежность к классу бозонов). До того считалось, что хотя атомы любого газа одинаковы, они в принципе различимы, но в новой схеме нет возможности даже говорить о том, какая из двух частиц полетела налево, а какая направо; из-за этого имеется меньше способов организовать картину «одна слева, другая справа», и таким образом нарушается привычная статистическая независимость, когда каждая частица вносит вклад в разнообразие возможностей независимо от всех остальных. Это влекло за собой теоретические последствия, включая более последовательный вывод закона Планка (собственно, результат Бозе) и выражения для теплоемкости твердых тел, а также идею о «конденсате», высказанную Эйнштейном в статье, вышедшей уже в 1925 г.
30
Бор, по-видимому, желал развить – и применять сначала в квантовой теории, а затем по возможности повсеместно – «принцип дополнительности». О нем сейчас еще можно услышать от физиков, но философы едва ли рассматривают его как сколько-нибудь серьезную идею.
31
Быть может, стоит прокомментировать потерю наглядности, начав с электрона в атоме. Он не движется там по какой бы то ни было траектории (и вообще не находится в определенной точке пространства ни в какой момент времени), но интуитивно трудно отделаться от ощущения, что он все-таки «как-то там вращается». В действительности же наглядной картины нет, ее заменяют те самые два «атрибута вращения»; вместе с уровнем энергии они и описывают, «как устраиваются» электроны в атомах. Сейчас же обсуждаются атрибуты вращения, которые относятся к электрону самому по себе – прикреплены к нему постоянно и неотъемлемо, вне всякой связи с атомом. Для них наглядной картины, разумеется, нет, но ведь ее не было и в отношении атрибутов вращения электрона в атоме: ответа на вопрос «как и что вращается», если иметь в виду наглядную картину вращения, не предполагается ни в том, ни в другом случае. Квантовая механика не требует никаких подробностей, если выполняются формальные соотношения.