bannerbanner
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
42 из 80

578

Song S, Johnson FB. Epigenetic mechanisms impacting aging: a focus on histone levels and telomeres. Genes. 2018;9(4):201. https://pubmed.ncbi.nlm.nih.gov/29642537/

579

Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148(1–2):46–57. https://pubmed.ncbi.nlm.nih.gov/22265401/

580

Burgstaller JP, Brem G. Aging of cloned animals: a mini-review. Gerontology. 2017;63(5):417–25. https://pubmed.ncbi.nlm.nih.gov/27820924/

581

Wakayama S, Kohda T, Obokata H, et al. Successful serial recloning in the mouse over multiple generations. Cell Stem Cell. 2013;12(3):293–7. https://pubmed.ncbi.nlm.nih.gov/23472871/

582

López-León M, Goya RG. The emerging view of aging as a reversible epigenetic process. Gerontology. 2017;63(5):426–31. https://pubmed.ncbi.nlm.nih.gov/28538216/

583

Waddington CH. The epigenotype. 1942. Int J Epidemiol. 2012;41(1):10–13. https://pubmed.ncbi.nlm.nih.gov/22186258/

584

Watson JD, Crick FHC. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature. 1953;171(4356):737–8. https://pubmed.ncbi.nlm.nih.gov/13054692/

585

Song S, Johnson FB. Epigenetic mechanisms impacting aging: a focus on histone levels and telomeres. Genes. 2018;9(4):201. https://pubmed.ncbi.nlm.nih.gov/29642537/

586

Salzberg SL. Open questions: how many genes do we have? BMC Biol. 2018;16(1):94. https://pubmed.ncbi.nlm.nih.gov/30124169/

587

Govindaraju D, Atzmon G, Barzilai N. Genetics, lifestyle and longevity: lessons from centenarians. Appl Transl Genom. 2015;4:23–32. https://pubmed.ncbi.nlm.nih.gov/26937346/

588

vel Szic KS, Declerck K, Vidakovic M, Vanden Berghe W. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenet. 2015;7(1):33. https://pubmed.ncbi.nlm.nih.gov/25861393/

589

Li X, Yi C. A novel epigenetic mark derived from vitamin C. Biochemistry. 2020;59(1):8–9. https://pubmed.ncbi.nlm.nih.gov/31538774/

590

Ciccarone F, Tagliatesta S, Caiafa P, Zampieri M. DNA methylation dynamics in aging: how far are we from understanding the mechanisms? Mech Ageing Dev. 2018;174:3–17. https://pubmed.ncbi.nlm.nih.gov/29268958/

591

Mitteldorf J. How does the body know how old it is? Introducing the epigenetic clock hypothesis. In: Yashin AI, Jazwinski SM, eds. Aging and Health – A Systems Biology Perspective. Interdisciplinary Topics in Gerontology, vol 40. Karger, Basel;2015:49–62. https://pubmed.ncbi.nlm.nih.gov/25341512/

592

Ashapkin VV, Kutueva LI, Vanyushin BF. Epigenetic clock: just a convenient marker or an active driver of aging? In: Guest PC, ed. Reviews on Biomarker Studies in Aging and Anti-Aging Research. Advances in Experimental Medicine and Biology, vol 1178. Springer Cham; 2019:175–206. https://pubmed.ncbi.nlm.nih.gov/31493228/

593

Vaiserman AM. Hormesis and epigenetics: is there a link? Ageing Res Rev. 2011;10(4):413–21. https://pubmed.ncbi.nlm.nih.gov/21292042/

594

Kawahata A, Sakamoto H. Some observations on sweating of the Aino. Jpn J Physiol. 1951;2(2):166–9. https://pubmed.ncbi.nlm.nih.gov/14897491/

595

Painter RC, Osmond C, Gluckman P, Hanson M, Phillips DI, Roseboom TJ. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG. 2008;115(10):1243–9. https://pubmed.ncbi.nlm.nih.gov/18715409/

596

Ornish D, Magbanua MJ, Weidner G, et al. Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. Proc Natl Acad Sci USA. 2008;105(24):8369–74. https://pubmed.ncbi.nlm.nih.gov/18559852/

597

Corona M, Velarde RA, Remolina S, et al. Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc Natl Acad Sci USA. 2007;104(17):7128–33. https://pubmed.ncbi.nlm.nih.gov/17438290/

598

Bacalini MG, Friso S, Olivieri F, et al. Present and future of anti-ageing epigenetic diets. Mech Ageing Dev. 2014;136–137:101–15. https://pubmed.ncbi.nlm.nih.gov/24388875/

599

Kucharski R, Maleszka J, Foret S, Maleszka R. Nutritional control of reproductive status in honeybees via DNA methylation. Science. 2008;319(5871):1827–30. https://pubmed.ncbi.nlm.nih.gov/18339900/

600

Hadi A, Najafgholizadeh A, Aydenlu ES, et al. Royal jelly is an effective and relatively safe alternative approach to blood lipid modulation: a meta-analysis. J Funct Foods. 2018;41:202–9. https://www.sciencedirect.com/science/article/abs/pii/S1756464617307284?via%3Dihub

601

Ecker S, Beck S. The epigenetic clock: a molecular crystal ball for human aging? Aging (Albany NY). 2019;11(2):833–5. https://pubmed.ncbi.nlm.nih.gov/30669120/

602

Ecker S, Beck S. The epigenetic clock: a molecular crystal ball for human aging? Aging (Albany NY). 2019;11(2):833–5. https://pubmed.ncbi.nlm.nih.gov/30669120/

603

Fransquet PD, Wrigglesworth J, Woods RL, Ernst ME, Ryan J. The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. Clin Epigenet. 2019;11(1):62. https://pubmed.ncbi.nlm.nih.gov/30975202/

604

Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51. https://pubmed.ncbi.nlm.nih.gov/11181995/

605

Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H, Richardson A. The role of DNA methylation in epigenetics of aging. Pharmacol Ther. 2019;195:172–85. https://pubmed.ncbi.nlm.nih.gov/30419258/

606

Устройство, выполняющее очень простое действие чрезвычайно сложным образом. Как правило, это происходит посредством длинной последовательности взаимодействий по «принципу домино». – Примеч. ред.

607

Mendelson MM. Epigenetic age acceleration: a biological doomsday clock for cardiovascular disease? Circ Genom Precis Med. 2018;11(3). https://pubmed.ncbi.nlm.nih.gov/29555673/

608

Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H, Richardson A. The role of DNA methylation in epigenetics of aging. Pharmacol Ther. 2019;195:172–85. https://pubmed.ncbi.nlm.nih.gov/30419258/

609

Mitteldorf J. A clinical trial using methylation age to evaluate current antiaging practices. Rejuvenation Res. 2019;22(3):201–9. https://pubmed.ncbi.nlm.nih.gov/30345885/

610

Mendelson MM. Epigenetic age acceleration: a biological doomsday clock for cardiovascular disease? Circ Genom Precis Med. 2018;11(3). https://pubmed.ncbi.nlm.nih.gov/29555673/

611

Social Security Administration. Actuarial life table. Period life table, 2017. Social Security Administration. https://www.ssa.gov/oact/STATS/table4c6.html. Accessed May 26, 2021.; https://www.ssa.gov/oact/STATS/table4c6.html

612

McCrory C, Fiorito G, Hernandez B, et al. GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. J Gerontol A Biol Sci Med Sci. 2021;76(5):741–9. https://pubmed.ncbi.nlm.nih.gov/33211845/

613

Mitteldorf J. A clinical trial using methylation age to evaluate current antiaging practices. Rejuvenation Res. 2019;22(3):201–9. https://pubmed.ncbi.nlm.nih.gov/30345885/

614

Mendelson MM. Epigenetic age acceleration: a biological doomsday clock for cardiovascular disease? Circ Genom Precis Med. 2018;11(3). https://pubmed.ncbi.nlm.nih.gov/29555673/

615

Mitteldorf J. An incipient revolution in the testing of anti-aging strategies. Biochemistry (Mosc). 2018;83(12):1517–23. https://pubmed.ncbi.nlm.nih.gov/30878026/

616

Horvath S, Pirazzini C, Bacalini MG, et al. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging (Albany NY). 2015;7(12):1159–70. https://pubmed.ncbi.nlm.nih.gov/26678252/

617

Declerck K, Vanden Berghe W. Back to the future: epigenetic clock plasticity towards healthy aging. Mech Ageing Dev. 2018;174:18–29. https://pubmed.ncbi.nlm.nih.gov/29337038/

618

Austad SN, Bartke A. Sex differences in longevity and in responses to anti-aging interventions: a mini-review. Gerontology. 2015;62(1):40–6. https://pubmed.ncbi.nlm.nih.gov/25968226/

619

Robert L, Fulop T. Longevity and its regulation: centenarians and beyond. Interdiscip Top Gerontol. 2014;39:198–211. https://pubmed.ncbi.nlm.nih.gov/24862022/

620

Beach SRH, Dogan MV, Lei MK, et al. Methylomic aging as a window onto the influence of lifestyle: tobacco and alcohol use alter the rate of biological aging. J Am Geriatr Soc. 2015;63(12):2519–25. https://pubmed.ncbi.nlm.nih.gov/26566992/

621

Vyas CM, Hazra A, Chang SC, et al. Pilot study of DNA methylation, molecular aging markers and measures of health and well-being in aging. Transl Psychiatry. 2019;9(1):118. https://pubmed.ncbi.nlm.nih.gov/30886137/

622

Pavanello S, Campisi M, Tona F, Dal Lin C, Iliceto S. Exploring epigenetic age in response to intensive relaxing training: a pilot study to slow down biological age. Int J Environ Res Public Health. 2019;16(17):3074. https://pubmed.ncbi.nlm.nih.gov/31450859/

623

Chaix R, Alvarez-López MJ, Fagny M, et al. Epigenetic clock analysis in long-term meditators. Psychoneuroendocrinology. 2017;85:210–4. https://pubmed.ncbi.nlm.nih.gov/28889075/

624

Maegawa S, Lu Y, Tahara T, et al. Caloric restriction delays age-related methylation drift. Nat Commun. 2017;8(1):539. https://pubmed.ncbi.nlm.nih.gov/28912502/

625

Belsky DW, Huffman KM, Pieper CF, Shalev I, Kraus WE. Change in the rate of biological aging in response to caloric restriction: CALERIE Biobank analysis. J Gerontol A Biol Sci Med Sci. 2018;73(1):4–10. https://pubmed.ncbi.nlm.nih.gov/28531269/

626

Belsky DW, Huffman KM, Pieper CF, Shalev I, Kraus WE. Change in the rate of biological aging in response to caloric restriction: CALERIE Biobank analysis. J Gerontol A Biol Sci Med Sci. 2018;73(1):4–10. https://pubmed.ncbi.nlm.nih.gov/28531269/

627

Horvath S, Erhart W, Brosch M, et al. Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci USA. 2014;111(43):15538–43. https://pubmed.ncbi.nlm.nih.gov/25313081/

628

de Toro-Martín J, Guénard F, Tchernof A, et al. Body mass index is associated with epigenetic age acceleration in the visceral adipose tissue of subjects with severe obesity. Clin Epigenetics. 2019;11(1):172. https://pubmed.ncbi.nlm.nih.gov/31791395/

629

Horvath S, Erhart W, Brosch M, et al. Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci USA. 2014;111(43):15538–43. https://pubmed.ncbi.nlm.nih.gov/25313081/

630

Lu AT, Quach A, Wilson JG, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019;11(2):303–27. https://pubmed.ncbi.nlm.nih.gov/30669119/

631

Quach A, Levine ME, Tanaka T, et al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging (Albany NY). 2017;9(2):419–37. https://pubmed.ncbi.nlm.nih.gov/28198702/

632

Hardy TM, Tollefsbol TO. Epigenetic diet: impact on the epigenome and cancer. Epigenomics. 2011;3(4):503–18. https://pubmed.ncbi.nlm.nih.gov/22022340/

633

Levine ME, Lu AT, Quach A, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573–91. https://pubmed.ncbi.nlm.nih.gov/29676998/

634

Dugué PA, Bassett JK, Joo JE, et al. Association of DNA methylation-based biological age with health risk factors and overall and cause-specific mortality. Am J Epidemiol. 2018;187(3):529–38. https://pubmed.ncbi.nlm.nih.gov/29020168/

635

Lind PM, Salihovic S, Lind L. High plasma organochlorine pesticide levels are related to increased biological age as calculated by DNA methylation analysis. Environ Int. 2018;113:109–13. https://pubmed.ncbi.nlm.nih.gov/29421399/

636

Mariscal-Arcas M, Lopez-Martinez C, Granada A, Olea N, Lorenzo-Tovar ML, Olea-Serrano F. Organochlorine pesticides in umbilical cord blood serum of women from Southern Spain and adherence to the Mediterranean diet. Food Chem Toxicol. 2010;48(5):1311–5. https://pubmed.ncbi.nlm.nih.gov/20188779/

637

Ward-Caviness CK, Nwanaji-Enwerem JC, Wolf K, et al. Long-term exposure to air pollution is associated with biological aging. Oncotarget. 2016;7(46):74510–25. https://pubmed.ncbi.nlm.nih.gov/27793020/

638

Ryan J, Wrigglesworth J, Loong J, Fransquet PD, Woods RL. A systematic review and meta-analysis of environmental, lifestyle, and health factors associated with DNA methylation age. J Gerontol A Biol Sci Med Sci. 2020;75(3):481–94. https://pubmed.ncbi.nlm.nih.gov/31001624/

639

Mitteldorf J. A clinical trial using methylation age to evaluate current antiaging practices. Rejuvenation Res. 2019;22(3):201–9. https://pubmed.ncbi.nlm.nih.gov/30345885/

640

Fransquet PD, Wrigglesworth J, Woods RL, Ernst ME, Ryan J. The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. Clin Epigenet. 2019;11(1):62. https://pubmed.ncbi.nlm.nih.gov/30975202/

641

Ashapkin VV, Kutueva LI, Vanyushin BF. Epigenetic clock: just a convenient marker or an active driver of aging? In: Guest PC, ed. Reviews on Biomarker Studies in Aging and Anti-Aging Research. Advances in Experimental Medicine and Biology, vol 1178. Springer Cham; 2019:175–206. https://pubmed.ncbi.nlm.nih.gov/31493228/

642

Nobel Media AB 2021. Shinya Yamanaka – Facts. NobelPrize.org. https://www.nobelprize.org/prizes/medicine/2012/yamanaka/facts/. Accessed June 5, 2021.; https://www.nobelprize.org/prizes/medicine/2012/yamanaka/facts/

643

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. https://pubmed.ncbi.nlm.nih.gov/16904174/

644

Shieh SJ, Cheng TC. Regeneration and repair of human digits and limbs: fact and fiction. Regeneration. 2015;2(4):149–68. https://pubmed.ncbi.nlm.nih.gov/27499873/

645

Lu Y, Brommer B, Tian X, et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature. 2020;588(7836):124–9. https://pubmed.ncbi.nlm.nih.gov/33268865/

646

Jacobsen SC, Brøns C, Bork-Jensen J, et al. Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia. 2012;55(12):3341–9. https://pubmed.ncbi.nlm.nih.gov/22961225/

647

Perfilyev A, Dahlman I, Gillberg L, et al. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am J Clin Nutr. 2017;105(4):991–1000. https://pubmed.ncbi.nlm.nih.gov/28275132/

648

Miles FL, Mashchak A, Filippov V, et al. DNA methylation profiles of vegans and non-vegetarians in the Adventist Health Study-2 cohort. Nutrients. 2020;12(12):3697. https://pubmed.ncbi.nlm.nih.gov/33266012/

649

Key TJ, Appleby PN, Crowe FL, Bradbury KE, Schmidt JA, Travis RC. Cancer in British vegetarians: updated analyses of 4998 incident cancers in a cohort of 32,491 meat eaters, 8612 fish eaters, 18,298 vegetarians, and 2246 vegans. Am J Clin Nutr. 2014;100 Suppl 1:378S-85S. https://pubmed.ncbi.nlm.nih.gov/24898235/

650

Tantamango-Bartley Y, Jaceldo-Siegl K, Fan J, Fraser G. Vegetarian diets and the incidence of cancer in a low-risk population. Cancer Epidemiol Biomarkers Prev. 2013;22(2):286–94. https://pubmed.ncbi.nlm.nih.gov/23169929/

651

McCord JM. Analysis of superoxide dismutase activity. Curr Protoc Toxicol. 2001;Chapter 7:Unit7.3. https://pubmed.ncbi.nlm.nih.gov/23045062/

652

Thaler R, Karlic H, Rust P, Haslberger AG. Epigenetic regulation of human buccal mucosa mitochondrial superoxide dismutase gene expression by diet. Br J Nutr. 2009;101(5):743–9. https://pubmed.ncbi.nlm.nih.gov/18684339/

653

Johnson AA, Akman K, Calimport SRG, Wuttke D, Stolzing A, de Magalhães JP. The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res. 2012;15(5):483–94. https://pubmed.ncbi.nlm.nih.gov/23098078/

654

ElGendy K, Malcomson FC, Lara JG, Bradburn DM, Mathers JC. Effects of dietary interventions on DNA methylation in adult humans: systematic review and meta-analysis. Br J Nutr. 2018;120(9):961–76. https://pubmed.ncbi.nlm.nih.gov/30355391/

655

Miller JW. Factors associated with different forms of folate in human serum: the folate folio continues to grow. J Nutr. 2020;150(4):650–1. https://pubmed.ncbi.nlm.nih.gov/32119743/

656

Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and Its Panel on Folate, Other B Vitamins, and Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. National Academies Press (US); 1998. https://pubmed.ncbi.nlm.nih.gov/23193625/

657

ter Borg S, Verlaan S, Hemsworth J, et al. Micronutrient intakes and potential inadequacies of community-dwelling older adults: a systematic review. Br J Nutr. 2015;113(8):1195–206. https://pubmed.ncbi.nlm.nih.gov/25822905/

658

Jacob RA, Gretz DM, Taylor PC, et al. Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. J Nutr. 1998;128(7):1204–12. https://pubmed.ncbi.nlm.nih.gov/9649607/

659

Rampersaud GC, Kauwell GP, Hutson AD, Cerda JJ, Bailey LB. Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am J Clin Nutr. 2000;72(4):998–1003. https://pubmed.ncbi.nlm.nih.gov/11010943/

660

Amenyah SD, Hughes CF, Ward M, et al. Influence of nutrients involved in one-carbon metabolism on DNA methylation in adults – a systematic review and meta-analysis. Nutr Rev. 2020;78(8):647–66. https://pubmed.ncbi.nlm.nih.gov/31977026/

661

Rampersaud GC, Kauwell GP, Hutson AD, Cerda JJ, Bailey LB. Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am J Clin Nutr. 2000;72(4):998–1003. https://pubmed.ncbi.nlm.nih.gov/11010943/

662

Mathers JC, Strathdee G, Relton CL. Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet. 2010;71:3–39. https://pubmed.ncbi.nlm.nih.gov/20933124/

663

Eaton SB, Eaton SB. Paleolithic vs. modern diets – selected pathophysiological implications. Eur J Nutr. 2000;39(2):67–70. https://pubmed.ncbi.nlm.nih.gov/10918987/

664

Метилентетрагидрофолатредуктаза, ключевой фермент фолатного цикла. – Примеч. ред.

665

Parkhurst E, Calonico E, Noh G. Medical decision support to reduce unwarranted methylene tetrahydrofolate reductase (MTHFR) genetic testing. J Med Syst. 2020;44(9):152. https://pubmed.ncbi.nlm.nih.gov/32737598/

666

Levin BL, Varga E. MTHFR: addressing genetic counseling dilemmas using evidence-based literature. J Genet Couns. 2016;25(5):901–11. https://pubmed.ncbi.nlm.nih.gov/27130656/

667

Porter K, Hoey L, Hughes CF, Ward M, McNulty H. Causes, consequences and public health implications of low B-vitamin status in ageing. Nutrients. 2016;8(11). https://pubmed.ncbi.nlm.nih.gov/27854316/

668

Friso S, Choi SW, Girelli D, et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci USA. 2002;99(8):5606–11. https://pubmed.ncbi.nlm.nih.gov/11929966/

669

Bailey LB. Folate, methyl-related nutrients, alcohol, and the MTHFR 677C®T polymorphism affect cancer risk: intake recommendations. J Nutr. 2003;133(11 Suppl 1):3748S-53S. https://pubmed.ncbi.nlm.nih.gov/14608109/

670

Levin BL, Varga E. MTHFR: addressing genetic counseling dilemmas using evidence-based literature. J Genet Couns. 2016;25(5):901–11. https://pubmed.ncbi.nlm.nih.gov/27130656/

671

Parkhurst E, Calonico E, Noh G. Medical decision support to reduce unwarranted methylene tetrahydrofolate reductase (MTHFR) genetic testing. J Med Syst. 2020;44(9):152. https://pubmed.ncbi.nlm.nih.gov/32737598/

672

Seitz HK, Matsuzaki S, Yokoyama A, Homann N, Väkeväinen S, Wang XD. Alcohol and cancer. Alcohol Clin Exp Res. 2001;25(5 Suppl ISBRA):137S-43S. https://pubmed.ncbi.nlm.nih.gov/15082451/

673

Bailey LB. Folate, methyl-related nutrients, alcohol, and the MTHFR 677C®T polymorphism affect cancer risk: intake recommendations. J Nutr. 2003;133(11 Suppl 1):3748S-53S. https://pubmed.ncbi.nlm.nih.gov/14608109/

674

Griswold MG, Fullman N, Hawley C, et al. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2018;392(10152):1015–35. https://pubmed.ncbi.nlm.nih.gov/30146330/

675

Bo Y, Zhu Y, Tao Y, et al. Association between folate and health outcomes: an umbrella review of meta-analyses. Front Public Health. 2020;8:550753. https://pubmed.ncbi.nlm.nih.gov/33384976/

676

Bo Y, Zhu Y, Tao Y, et al. Association between folate and health outcomes: an umbrella review of meta-analyses. Front Public Health. 2020;8:550753. https://pubmed.ncbi.nlm.nih.gov/33384976/

677

Crider KS, Bailey LB, Berry RJ. Folic acid food fortification – its history, effect, concerns, and future directions. Nutrients. 2011;3(3):370–84. https://pubmed.ncbi.nlm.nih.gov/22254102/

678

Bailey SW, Ayling JE. The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. Proc Natl Acad Sci U S A. 2009;106(36):15424–9. https://pubmed.ncbi.nlm.nih.gov/19706381/

На страницу:
42 из 80