Полная версия
Системное мышление 2024. Том 1
В самых разных проектах одновременно происходят работы самых разных людей по самым разным методам/практикам с их самыми разными дисциплинами/теориями/знаниями/алгоритмами, разными инструментами, разными материалами для этих работ. Вам требуется немного думать о многих из них, чтобы лучше разобраться в собственном проекте: каждый проект и сам включает в себя много прикладных работ по прикладным методам, а при получении проблем ещё и требует работы методов мышления интеллекта, но ещё не бывает «сферических проектов в вакууме», проект встречается с огромным количеством методов работы других проектов. Каждый приходящий со стороны в проект занимается чем-то своим: внешние контрагенты, поставщики материалов, покупатели, менеджеры, посредники, организации стандартизации, каждый день в проекте появляются новые люди, и со всеми ними надо содержательно разговаривать. Надо уметь как-то разобраться, что они все делают, чтобы как-то выстроить с ними содержательный разговор. Мышление и деятельность во всём этом разнообразии деятельностей самого проекта и окружающих его проектов устроены примерно одинаково, и можно это компактное мышление выучить один раз, а потом применять в разных работах одного проекта, или даже в разных проектах. Усиление интеллекта, в том числе овладение системным мышлением посвящены как раз этой компактификации мышления: один раз учишься думать, затем применяешь во всех проектах. Включаешь сильное мышление один раз, а потом просто никогда не выключаешь.
Есть легенда, что талант к мышлению (какого бы вида оно ни было) врождённый. Да, генетическая предрасположенность к какому-то виду мышления бывает, как у спортсменов к какому-то виду спорта. Но там не так всё однозначно: связанных с интеллектом генов сотни, за счёт генетики далеко в мышлении не убежишь.
Так что мы рекомендуем полагаться не на генетику, а на обучение мышлению: сами приёмы мышления не заложены в мозге, они должны быть усвоены и натренированы. Это означает, что натренированный «не талант» легко обойдёт в том или ином виде мышления нетренированного «самородка», который так и останется «вечно подающим надежды», он просто не будет знать, как мыслить правильно. Выученный волками потенциально гениальный Маугли не будет уметь даже разговаривать, до сильного мышления дело даже не дойдёт. Врождённый IQ не имеет особо большого значения (уже приводили примеры), хорошее образование (то есть обучение методам мышления интеллект-стека) в жизни значит много больше!
Интеллект-стек – это набор лучших на сегодняшний момент в нашей цивилизации методов мышления, основанных на лучших объяснительных теориях. Лучших (state-of-the-art) в цивилизации по состоянию на нынешний год, а не какой-нибудь 2011 (новая весна искусственного интеллекта с использованием глубокого обучения на нейросетях началась в 2012 году, в 2011 году компьютеры ещё не разговаривали и не могли хорошо видеть!) или уж совсем древний 1980 год (год появления первого персонального компьютера IBM PC).
Эти решения о выборе тех или иных приёмов мышления изо всего известного человечеству множества вариантов как раз и направлены на то, чтобы думать абстрактно, адекватно, осознанно, рационально, системно, практично/проактивно/деятельно, а не «дикарски», с игнорированием всего накопленного цивилизацией мыслительного опыта. И эти решения по выбору безмасштабных (универсальных для разных размеров систем и разных масштабов времени существования систем) и неантропоцентричных (неспецифических именно для человека) приёмов мышления предполагают письменное оформление используемых моделей мышления, начальных данных, промежуточных и конечных результатов мышления, да ещё и выход в реальный мир. Условно, компьютеры тут тоже «письменно». А «выход в реальный мир» – это выход в изменение физического мира, выход в действия: от «подойти посмотреть» до «пойти поговорить» и «изменить, чтобы не мешало».
Решения по выбору методов/приёмов мышления делаются отнюдь не только приёмами мышления «внутри головы», чисто информационной/вычислительной работой без тела. Это вполне себе проактивный и деятельный метод мыслительной работы, выходящий в мир (в чужие головы, в чужие датацентры) и изменяющий затем к лучшему как мир, так и самого принимающего решения мыслящего агента.
Насколько окультуренный цивилизацией интеллект, то есть проводящий мышление с использованием фундаментальных методов интеллект-стека в современном варианте этих методов, сдерживает или наоборот, стимулирует творчество по сравнению с живым «дикарским» мышлением? Опыт цивилизации показывает, что образованные и мыслительно тренированные люди обычно выигрывают в массе своей у неучей, несмотря на их якобы «шаблонное мышление». Гениальные самоучки-дикари-кулибины чрезвычайно редки. При этом на поверку «самоучки-дикари» оказываются часто более чем начитаны и образованы, разве что их образование не было связано с каким-то официальным учебным заведением, а паттерны своего «гениального самородного мышления» они тоже брали из литературы и подхватывали у своих вполне образованных учителей, а не изобретали по ходу дела. Это народная легенда, что самоучки нигде не учились. Они очень даже учились, только сами, а не «официально».
Интеллект в порядке самообразования нужно «накачать» и «разработать» так же, как мышцы и суставы для готовности тела к движению – мозг ведь тоже тренируем, он пластичен, то есть физически изменяется в ходе тренировки! И именно поэтому тренировки мышления не быстры. Как и с обычными мышцами, быстрых результатов за одну-две тренировки мышления не получишь, нужны месяцы и годы, ибо при этом задействуются медленные биологические процессы в мозге.
В ходе человеческого мышления с использованием фундаментальных знаний отращиваются синапсы нейронов, улучшается кровоснабжение мозга. Интеллект как физически реализованный на мозге вычислитель/«машина рассуждений» для методов мышления развивается медленно, это месяцы и годы. Хорошим сравнением тут будет спорт: за три месяца тренировок чемпионом не станешь, а вот за три года – чемпионом ещё нет, но от окружения «людей с улицы» будешь отличаться драматически.
Но есть и трюк: человек не полагается только на биологическую природу своего мышления, а задействует и компьютер. Даже если речь идёт не о полноценном компьютере, а просто о бумаге и ручке, то биологическому мозгу становится проще управлять вниманием, проще задействовать большую память, проще обмениваться результатами мышления. А ещё человеческий интеллект задействует тело, и речь идёт тут не только о том, что при письме шевелятся пальцы рук, а при чтении работают глазные мышцы. В курсе собранности, где даются и основы понятизации, довольно много рассказывается о связи собранности ума и тела (например, онтологический дребезг можно распознавать по ощущениям в теле).
Мышление проактивно, оно выходит в физический мир, тело в нём тоже имеет значение, включая продолженность тела в форме инструментов – телескопов, микроскопов, автомобилей, ракет, человекоподобных роботов.
Человеческое мышление имеет внешний характер, оно проходит не только в мозгу, но и во всём теле, и выходит за его пределы (тезис 4E30), поэтому системное мышление тренируется не только как умственное упражнение, но и с задействованием компьютерных средств моделирования – от просто письма в редакторе текстов или редакторе сложных табличек (вроде notion.so или coda.io) до изощрённого математического многомасштабного (multiscale, на разных уровнях структуры/организации моделируемой системы как физического объекта, с разными видами моделей для разных масштабов) имитационного моделирования.
Мы подчёркиваем, что нельзя говорить только о фундаментальных дисциплинах, то есть о чистой теории/знании/объяснениях. Надо говорить о методах/способах работы, где дисциплина/знания/алгоритмы поддержана инструментами, усиливающими мастерство «голого мыслящего мозга» (или «голого мыслящего компьютера», если речь идёт об AI). Люди (а сейчас уже и компьютерные нейросети, и роботы) давно не работают «просто руками», они используют инструменты. В мышлении люди давно не думают «просто мозгами», они используют компьютеры (а компьютеры используют в помощь себе другие компьютеры, или даже людей, или даже давно умерших людей – например, читают результаты мышления в книгах давно уже умерших авторов).
Если вы обнаружили себя в ходе глубокого размышления, в котором вы не ведёте никаких записей, не делаете никаких компьютерных моделей – вы явно что-то делаете не так. Мышление происходит сегодня письмом и моделированием, на чисто человеческую биологическую память одного человека надежды нет. Системное мышление тут не исключение.
Продолжительное фундаментальное образование нужно, чтобы не просто цивилизованно мыслить, но и мыслить бегло, причём с использованием инструментов для мышления (собеседников типа AI и других умных людей, записей в моделерах, заметок на естественных языках). Тут как в спорте: за три месяца чемпионом не станешь ни в одном виде спорта, но за три года вы будете драматически отличаться от «людей с улицы». А за десять лет можно уже думать и о чемпионстве: большинство ваших потенциальных конкурентов тут просто не дойдут до сравнения вашего и их мастерства, если вы тренируетесь/обучаетесь все десять лет. И обучение-развлечение деток в спортшколах сильно отличается от жёсткого обучения олимпийского резерва. В образовании всё то же самое: если у вас обучение-развлечение на три месяца – ваш интеллект вряд ли будет сильным. Если впахиваете много лет, то драматически будете отличаться от всех людей «с улицы», а если речь идёт о десятке лет – можно поговорить о том, что вы будете общаться с умнейшими людьми планеты, и не только вам будет с ними интересно, но им с вами будет интересно!
Натренированные до беглого применения паттерны мышления дают возможность как по проложенным в мозгу рельсам быстро проводить типовые абстрактные, рациональные, адекватные, осознанные, системные, практичные рассуждения, не затрачивая на это мыслительных усилий, то есть интуитивно, «на автомате» – включая рассудочное «пошаговое» мышление по образцам «из учебника», которое не кажется после тренировки чем-то запредельно трудным.
Только если эти «рельсы мышления» оказываются вдруг где-то не проложены, только при столкновении с чем-то действительно новым, можно переходить на затратное «просто мышление, уж как можем», задействовать какие-то иные, поисковые механизмы мышления, «голый биологический интеллект», как-то иногда методом проб и ошибок задействующий внешние средства типа компьютерного моделирования. Но такие выходы за пределы знакомого в мышлении – исключение, а не правило. Вам очень повезло, если вы оказались на таком фронтире, радуйтесь, что вы в первых рядах человеческой цивилизации.
Но не факт, что вы сможете на этом фронтире что-то придумать, пополнить запас эффективных паттернов мышления человечества: эволюция с методом проб и ошибок очень действенна, но большинство проб оказываются ошибками и на удачные пробы может просто не хватить времени и ресурсов.
Эти ускоряющие мышление взятые из культуры паттерны используются как в самых базовых видах мышления (логические рассуждения общего вида), так и в основанных на них более сложных (инженерное мышление общего вида), так и в быстро меняющихся ещё более специализированных и сложных вариантах рассуждений, включающих смесь познания/мышления и каких-то рутинных прикладных рассуждений по уже давно известному материалу.
Паттерны мышления используются в труде инженера-авиастроителя, менеджера, инвестора, дрессировщика дельфинов, танцора, учителя начальной школы, политика (при этом они могут быть людьми, но могу быть и роботами, и даже организациями из людей и роботов). Мышление должно быть культурно/практично/стильно/деятельно – оно должно следовать методу/способу. Это означает, что интеллект должен как-то повторять одни и те же приёмы мышления, если это лучшие известные приёмы мышления. Слабые приёмы мышления, которые вы придумываете каждый раз «под проблему» – не факт, что они справятся. Чтобы быть умным, надо знать, как быть умным. Паттерны сильного мышления надо выучить. Это делается в форме изучения приёмов/паттернов мышления из методов интеллект-стека.
Беглости мышления нужно добиваться в любом мышлении, мышление надо тренировать, как любое другое поведение, как любой другой метод/практику/культуру/стиль/деятельность/стратегию.
Кроме того, что выученные и далее натренированные до беглости культурные/стильные/практичные/«каким-то методом» паттерны мышления дают выигрыш в скорости по сравнению с мышлением-дичком, они предохраняют от грубых мыслительных ошибок. Один раз выучиваете операцию умножения – всю жизнь затем используете. Один раз выучиваете, что систему нужно рассматривать функционально в момент её работы в составе надсистемы, а ещё рассматривать конструктивно в момент её создания и развития – и тоже используете всю жизнь.
«Платят за согласование и удовлетворение интересов внешних проектных ролей, а не за „реализацию концепции системы“ и уж тем более не за „реализацию требований“, которых в современной инженерии уже нет, сама идея „требований“ устарела» – этот материал излагается в курсе системного мышления, один раз для всех систем. Если вы его не выучили не применили в жизни, то можно и без денег остаться! Лучше бы это выучить один раз, чтобы потом всю жизнь не ошибаться! Знание приёмов системного мышления очень практично, экономит время, спасает от ошибок.
Для «образованного человека» нужно освоить одно и то же компактное мышление по методам интеллект-стека, и оно пригодится ему для самых разных деятельностей и проектов. Ведь человеку придётся в жизни играть много самых разных трудовых/проектных/профессиональных ролей, занимаясь методами самой разной инженерии самых разных систем – выращивать цветы, детей, изготавливать шестерёнки, программировать ассистентов AI, обустраивать гостиничный номер, обустраивать палатку в горах, ловить змей, проектировать фемтосекундные лазеры, договариваться с AI по поводу формата выдачи материалов и т. д. Тут будут и рабочие методы, и методы/способы/культура поведения члена семьи, родителя, избирателя, политика.
Человек (хотя не только человек, но и предприятие, а то и компьютерная система с AI, или даже без AI) в жизни играет много ролей, за каждой из которых стоят какие-то иногда крупные («авиастроение»), а иногда очень дробные и маленькие («производство подшипников») по требуемым для них знаниям/объяснениям/теориям прикладные методы создания каких-то систем определённого уровня организации. Каждый из этих прикладных методов предполагает какие-то свои специфические прикладные паттерны рассуждений, но при столкновении с новым и неожиданным поворотом в проекте для решения проблем нужно будет подключать и общие/фундаментальные методы мышления интеллект-стека.
Будь вы основателем фирмы на рынке секс-игрушек, или менеджером проекта космического туризма, или инженером квантовых компьютеров – вам придётся для исполнения всех многочисленных прикладных методов для этих занятостей быть собранным, задействовать логику, согласовывать сложные модели систем с вашими коллегами, удерживать внимание на многочисленных ваших и чужих системах, которые затрагивает ваш проект и которые затрагиваются вашим проектом, вы будете использовать компьютеры с универсальными (AI) и не очень универсальными (обычный корпоративный софт) алгоритмами. В следующем проекте всё повторится, но на совершенно другом содержании проекта: весь ваш интеллект потребуется опять, чем бы вы ни занялись: проекта, где всё известно и можно рассуждать только по правилам, не бывает. А если есть какое-то совершенно знакомое действие, его даже «проектом» не назовут!
Мышление как деятельность интеллекта по решению проблем, по познанию сложно устроенного и непрерывно меняющегося мира – оно универсально, оно всегда будет с вами, и системное мышление входит в состав этого мыслительного минимума цивилизованного человека и цивилизованного AI. Хотя про системное мышление можно сказать и то, что оно входит в состав мыслительного минимума цивилизованной организации: системное мышление коллективно, оно объединяет интеллекты в организации, усиливает интеллект и организации в целом.
Обязательно нужно учитывать, что речь идёт о лучших на сегодняшний момент (state-of-the-art) приёмах мышления. Базовые приёмы мышления относительно стабильны (время их изменения может исчисляться сотнями лет: сколько веков было аристотелевой логике до момента прекращения её использования?), но в 21 веке и базовые приёмы за время длинной человеческой жизни могут меняться, так что тут нужно быть начеку и вовремя переучиваться. Удивительно, но немногие сегодня знают, что аристотелева логика с её силлогизмами осталась в истории, вместо неё сейчас множество вариантов математической логики. При этом логика перестала считаться основанием всей математики, поменялась и математика, и математическая логика (подробней об этом в курсе «Интеллект-стек», в разделах математики и логики).
Уже в 21 веке существенно изменилось понимание самого интеллекта, научного мышления, причинно-следственных отношений, логики как вероятностного вывода, да и самого системного мышления. Если вы будете изучать эти предметы по учебникам более древним, чем 2017 год издания, то вы можете удивиться, насколько они уже не отражают современное состояние методов мышления, основанных на этих дисциплинах. Не учитесь старью! Не учитесь системному мышлению авторов 80-х годов 20 века, проверяйте годы издания ваших учебников! В нашем курсе системное мышление приведено на момент 2024 года!
Так, при поиске учебника системного мышления в гугле одним из первых находится учебник тренеров нейролингвистического программирования Джозефа Коннора и Яна МакДермотта в переводе на русский язык. Но этот учебник в английском оригинале был написан аж четверть века назад, в 1997 году31! Неудивительно, что он так сильно отличается по содержанию от нашего курса, в нём приведены довольно древние представления о системном мышлении. Системное мышление не стояло на месте, оно интенсивно развивалось в 21 веке, ибо развивались все методы интеллект-стека, в их дисциплинах/теориях всё активней использовались понятия системного мышления.
Моделирование мыслительного мастерства
Оцените по десятибалльной шкале, насколько вас научили мыслительному мастерству по методам интеллект-стека в вузе, и сколько вы добавили самообразованием (в сумме 10 баллов на вуз+самостоятельное изучение). Это ничего, что вы не очень понимаете содержание фундаментальных методов интеллект-стека (оно будет раскрыто в курсе «Интеллект-стек»): попробуйте догадаться по краткой характеристике, данной в нашем курсе. Приведите год, в котором ваши знания являлись бы SoTA. Скажем, если вы изучали физику в последний раз в 1980 году, то этот год не может быть свежее 1980, но вероятнее всего, вы освоили на тот момент ещё более древнюю версию метода мышления, основанному на более древней дисциплине/теории, скажем ньютонову механику 1687 года, когда впервые были сформулированы законы Ньютона, а не квантовую механику или теорию относительности. Оценка вашего текущего мастерства может учитывать кривые забывания: если вы были отличником по какому-то методу мышления в 2010 году и тогда поставили бы себе 10 баллов, но с тех пор как-то ни разу не освежали своё мастерство в применении этих методов мышления – умение на сколько баллов у вас осталось?
Задания: мышление и интеллект-стек
Поставьте отметки о выполнении дел:
1. Курс «Моделирование и собранность» пройдён, «машинка типов» у меня работает, я не ленюсь записывать результаты выполнения заданий, могу удерживать внимание на курсе по 2—3 часа в день без отвлечений.
2. Моё расписание на ближайший месяц откорректировано: на проект «прохождение курса системного мышления» выделено 2—3 часа в день, заниматься буду за компьютером (а не читать урывками с телефона в метро). Понял, что заниматься системным мышлением – это не столько читать, сколько писать/моделировать.
3. Написан и опубликован первый пост по первому разделу курса «Системного мышления». Что пришло в голову в ходе прохождения материала этого раздела? Что было наиболее удивительным? Приведите в посте список терминов, которые вы увидели впервые в этом разделе («список незнакомых мне слов»).
4. Изучение курса «Интеллект-стек» будет в вашей учебной программе много дальше. Тем не менее, загляните в этот курс, посмотрите его «по диагонали» (как минимум, просмотрите оглавление). Напишите пост с описанием того, что вы ожидали увидеть в этом курсе, и что увидели при «пролистывании».
2. Наш вариант системного мышления: третье поколение
Варианты системного подхода
⠀
Системное мышление (systems thinking) – это мышление с использованием основных понятий и мыслительных приёмов системного подхода (systems approach). Есть много разных вариантов системного подхода, существенно отличающихся друг от друга в степени проработанности, используемой ими терминологии и деталях, но совпадающих в своих основах. Главное во всех вариантах системного подхода – это многоуровневое рассмотрение системы как части какой-то надсистемы сначала, чтобы потом рассматривать подсистемы как части системы. Этот мыслительный ход (сначала к надсистеме, «наверх» по системным уровням, потом к подсистеме, «вниз» по системным уровням) выполняется на много уровней вверх и вниз.
Речь идёт о выделении систем, надсистем, подсистем исключительно вниманием прямо на работающей/функционирующей системе. Никакой разборки систем на физические отдельные части не производится. В ходе физической сборки/разборки во время создания системы (а не во время использования/работы/функционирования) такое «строительное» рассмотрение конструктивных/материальных частей системы тоже есть, но оно в системном мышлении оказывается не главное. Главное – это в момент использования/работы/функционирования, и вот эти функциональные части системы (функциональные объекты, роли) выделаются вниманием. Чтобы не утерять внимания, используем запись – системное мышление предусматривает системное моделирование, оно не проходит чисто «в уме». Не пишете – не мыслите! Об этом «выделении вниманием» и записях для неутери внимания при отвлечениях мышления подробней говорилось в курсе «Моделирование и собранность».
Впервые системный подход появился в физике. Понятие системы в современном системном подходе более развито, чем понятие системы в физике. Система в физике – это просто часть мира/вселенной в рассмотрении. В этом плане есть рассматриваемая часть всего мира как система, граница системы и весь остальной мир за границей системы как окружение/среда/environment. Системы в физике (например, понятие термодинамической системы) долгое время не относили даже к полноценному системному подходу, потому как в физике особо не обсуждалась многоуровневость систем: там хватало обсуждения системы, состоящей из каких-то частей в окружении, и только. В то же время понятие системы в физике используется весьма активно до сих пор32.
Системный подход как основа системного мышления именно под названием systems thinking появился сначала на биологическом материале. Биологи пытались описать заливной луг как целое с его сотнями видов растений и животных и круглогодичными изменениями. Живое на части не разрежешь, луг оказался исключительно сложным объектом для описания и понимания. Поэтому системное мышление появилось как управление движением внимания исследователя по разным уровням деления целой системы на части (или наоборот, сборки вниманием целой системы из отдельно выбираемых вниманием частей).
Основы системного подхода претерпели существенное развитие с момента предложения в 1937 году биологом Людвигом фон Берталанфи33 общей теории систем. Вообще, подход (approach) – это когда разработанные в рамках одного метода на примере одной предметной области понятия, методы мышления, приёмы действия и инструменты их поддержки применяются затем к другим предметным областям. Общая теория систем была разработана главным образом на развитом на биологическом материале понятии системы из физики (это было что-то типа «теория физики для биологов»), а уж затем было предложено применять её положения ко многим и многим другим предметным областям («общая теория систем», оторванная уже и от предметной области биологии).
Сегодня предложение каких-то важных типов объектов и отношений в какой-то предметной области чаще всего называют framework, что переводится тоже как «подход». Этот «подход»/framework представляет собой какую-то онтику (частную онтологию, не согласованную с другими онтиками в других предметных областях, всё-таки под онтологией понимается какое-то общее понимание объектов и отношений, существующих в мире), задаваемую не на формальном математическом языке, а в виде не слишком формального текстового описания. Мы дальше отметим, что чем выше уровень абстракции таких «подходов», тем меньше они будут похожи на «математические формализмы», тем больше они будут выражаться текстами на естественном языке, задающим понятия и отношения между понятиями путём предъявления каких-то примеров употреблений этих понятий в тексте, а не путём математических формальных определений, как в математике. Интеллектуальные агенты сегодня – это не логические компьютеры, а живые люди и AI-агенты, работающие не в локальных/символьных (как математики, «с формулами»), а в распределённых (как в мозгу или компьютерной нейросети) представлениях, несимвольных (можете думать о «голографии» как примере нелокальных представлений, хотя этих нелокальных представлений существует множество самых разных вариантов34). Вот на таком низком уровне формальности описывается и набор объектов и отношений системного подхода/approach/framework, хотя начальные работы по системному подходу и пытались унаследовать более формальный язык описаний из физики, откуда и пришло понятие системы.