Полная версия
Подрывные инновации: будущее технологий и общества
– природоохранные – технологии возобновляемых источников энергии производят электричество или топливо без выбросов в окружающую среду парниковых газов или других загрязняющих веществ, что делает их более устойчивой и экологически чистой альтернативой традиционным источникам ископаемого топлива.
– экономические – технологии возобновляемой энергетики могут обеспечить более стабильный и предсказуемый источник электроэнергии или топлива, поскольку стоимость сырья (например, солнечного света, ветра или воды) обычно бесплатна, а поставки часто более стабильны, чем у ископаемых видов топлива;
– безопасность – технологии, использующие возобновляемые источники энергии помогут снизить зависимость государства от зарубежных источников природных ресурсов для генерации энергии, повысив энергетическую безопасность государства.
В последние годы проблема изменения климата привела к тому, что на международном уровне выработана концепция «предоставления по разумной цене надежной и экологически чистой энергии». Рассмотрим некоторые примеры использования технологий возобновляемых источников энергии:
– солнечная энергия – технологии солнечной энергии генерируют электричество или тепло из солнечных лучей. Сюда входят такие технологии, как фотогальванические панели, преобразующие солнечный свет в электричество, и солнечные тепловые системы, использующие солнечное тепло при производстве пара для выработки электроэнергии;
– энергия ветра – технологии ветроэнергетики вырабатывают электроэнергию, используя энергию ветра. Сюда входят ветряные турбины, которые используют энергию ветра для выработки электроэнергии, и ветряные насосы, которые используют ветер для перекачки воды или питания механических устройств;
– гидроэлектроэнергия – технологии гидроэнергетики вырабатывают электроэнергию, используя энергию движущейся воды, при течении рек или морских приливах. Сюда входят плотины гидроэлектростанций, которые используют силу падающей воды для генерации электроэнергии, и приливные турбины, которые используют для выработки электроэнергии в процессе морских приливов;
– энергия биомассы – технологии получения энергии из биомассы предполагают выработку электроэнергии или топлива путем сжигания органических материалов, таких как древесина, сельскохозяйственные культуры или отходы. Сюда входят такие технологии, как электростанции на дровах, которые сжигают древесину для выработки электроэнергии, а также биотопливо, которое производится из растительного материала и используется вместо бензина или дизельного топлива.
Согласно данным Международного энергетического агентства (МЭА), в 2019 году на возобновляемые источники энергии, такие как ветер, солнце, гидроэнергетика и биоэнергетика, пришлось около 90% новых мощностей в мировой энергетике. А по данным Глобального совета по ветроэнергетике, общая установленная мощность ветроэнергетики во всем мире в 2019 году достигла 706 ГВт, увеличение составило 16% по сравнению с 2018 годом.
По данным Управления энергетической информации США (EIA), в 2019 году возобновляемые источники энергии, включая гидроэлектроэнергию, биомассу, геотермальную энергию, солнечную энергию и ветер, обеспечили 11% от общего объёма производства электроэнергии в США. По данным EIA, с 2010 года мощность солнечной энергетики в коммунальном масштабе в США росла в среднем на 18% за год, в то время как рост мощности ветровой энергии составил в среднем 7% за год.
По данным Национальной лаборатории возобновляемых источников энергии (NREL), к 2030 году США смогут вырабатывать 20% своей электроэнергии за счёт ветра, а в 2050 году этот показатель приблизится к 35%.
В целом, технологии возобновляемых источников энергии обладают рядом преимуществ и могут сыграть важную роль в переходе к более устойчивой и экологически чистой энергетической системе. В дополнение к преимуществам вышеперечисленных технологий использования возобновляемых источников энергии, необходимо выделить несколько важных аспектов этих технологий:
– эффективность – технологии возобновляемых источников энергии различаются по своей эффективности, при этом некоторые технологии более эффективны в преобразовании сырья в электричество или топливо, чем другие. Например, солнечные панели, как правило, более эффективно трансформируют солнечный свет в электричество, чем ветряные турбины, которые преобразовывают в электричество силу ветра;
– масштаб применения – технологии использования возобновляемых источников энергии можно использовать в различных масштабах, от небольших систем, питающих один дом или небольшое предприятие, до крупных коммунальных проектов, вырабатывающих электроэнергию для целой сети потребителей.
– прерывистость – некоторые технологии возобновляемых источников энергии, такие как солнечная и ветровая, носят прерывистый характер в связи с тем, что они вырабатывают электроэнергию только тогда, когда светит солнце или дует ветер. Этим можно управлять за счет использования технологий накопления и хранения энергии или интеграции этих технологий с другими источниками электроэнергии;
– стоимость – стоимость технологий возобновляемой энергетики значительно снизилась в последние годы, что делает их более конкурентоспособными по сравнению с традиционной энергетикой, использующей для генерации электроэнергии ископаемое топливо. Однако первоначальная стоимость этих технологий всё ещё может быть экономически невыгодной для многих частных потребителей и предприятий.
По данным Международного агентства по возобновляемым источникам энергии (IRENA), возобновляемые источники энергии могут обеспечить 66% мирового производства электроэнергии к 2030 году и 85% к 2050 году, при этом ожидается, что солнечная и ветровая энергия будут доминировать в структуре энергопотребления. Эффективность, масштаб применения, прерывистость и стоимость технологий использования возобновляемых источников энергии являются важными факторами, которые следует учитывать при оценке потенциала этих технологий для перехода к более устойчивой энергетической системе.
Рассмотрим некоторые из последних прорывных разработок в области возобновляемых источников энергии.
В 2023 году в области производства гидроэлектроэнергии была представлена новая технология: гидравлическая мини-турбина, напечатанная на 3D-принтере, или SETUR. Эта инновационная турбина не предусматривает применение традиционных лопастей, вместо этого формируя завихрение потока воды используемого в качестве источника энергии. Эта технология может быть эффективной и рентабельной при использовании в различных условиях, таких как реки, приливные течения, океанские течения и даже промышленные сточные воды или оросительные каналы. Кроме того, компактная и легкая конструкция напечатанной на 3D-принтере турбины делает её идеальной для использования в мегаполисах, где потребность в энергии высока, а водоснабжение легкодоступно. Ключевым принципом конструкции SETUR является угол рассеивания зазора между ротором и статором, что имеет решающее значение для выработки электроэнергии. Ротор может вращаться над краевой конструкцией контейнера, и когда жидкость течёт по нему, нестабильность поля завихрённости потока заставляет жидкость вращаться, тем самым вырабатывая энергию. Технология всё ещё находится в стадии разработки и тестирования, но это многообещающее решение для устойчивого производства энергии в будущем.
В 2023 году исследователи из Тихоокеанской северо-западной национальной лаборатории (PNNL) разработали новую технологию под названием «Вращающийся генератор», представляющую собой цилиндрический трибоэлектрический наногенератор (TENG), который использует энергию океанских волн для питания датчиков и других устройств. TENG – это сборка для выработки электроэнергии, которая может преобразовывать энергию волн в электрическую энергию, что имеет решающее значение для мониторинга океанских экосистем и изменения климата. Основная проблема систем наблюдения за океаном, состоящих из нескольких датчиков и спутниковой связи, заключается в том, что они в основном питаются от батарей с ограниченным сроком службы, поэтому необходимо разработать решение для сбора энергии океанских волн. Вращающийся генератор использует запатентованный цилиндрический трибоэлектрический наногенератор с умножением частоты (FMC-TENG), который более эффективно преобразует медленные однородные волны в энергию. Эта технология идеально подходит для питания устройств в океанских операциях, где мониторинг и доступ затруднены. Прототип FMC-TENG смог произвести достаточную мощность для запуска небольшой электроники, такой как датчики температуры и акустические резонаторы. Кроме того, FMC-TENG имеет малый вес и может работать как на свободно плавающих установках, так и на пришвартованных платформах. Ожидается, что будет реализовано крупномасштабное коммерческое использование вращающихся генераторов, которое будет достаточно мощным, чтобы поддерживать всю съёмку в открытом океане.
В 2023 году швейцарский стартап «Sun-Ways» разработал уникальное решение по использованию солнечной энергии для электроснабжения поездов путём размещения фотоэлектрических панелей между железнодорожными путями. Система, разработанная в сотрудничестве с Федеральной политехнической школой Лозанны и швейцарским агентством инноваций «Innosuisse», состоит из, предварительно собранной, механической конструкции, которую можно загрузить на поезд и установить между путями. Панели также легко снимаются и вывозятся для обслуживания. Потенциал этой системы огромен, учитывая, что железнодорожная сеть только в Швейцарии простирается почти на 7000 километров, система может генерировать до 1 ТВтч солнечной энергии. Компания также планирует расширить обслуживание железнодорожной сети протяженностью 260 000 километров в Европе и 1,16 миллиона километров по всему миру.
В 2023 году учёные из Швейцарского федерального технологического института разработали устройство, которое может извлекать газообразный водород из влажного воздуха с помощью солнечной энергии. Устройство, называемое фотоэлектрохимической ячейкой, работает, имитируя фотосинтез – процесс, посредством которого растения преобразуют энергию света в химическую энергию. Устройство использует прозрачные электроды и полупроводниковые материалы для захвата и использования солнечного света для расщепления молекул воды на водород и кислород. Полученный водород можно использовать в качестве чистого и устойчивого источника топлива. Устройство всё ещё находится в стадии разработки и требует дополнительных исследований для повышения его эффективности.
Потенциальное воздействие на энергетику и окружающую среду
Согласно Рамочной конвенции Организации Объединенных Наций об изменении климата (РКИКООН), возобновляемые источники энергии составляли 26,2% мирового производства электроэнергии в 2018 году и, как ожидается, к 2050 году достигнут 84%.
Внедрение технологий использования возобновляемых источников энергии может оказать значительное влияние, как на энергетику, так и на окружающую среду. Каким же окажется воздействие технологии возобновляемых источников энергии на энергетику и окружающую среду?
В энергетике внедрение технологий использования возобновляемых источников энергии может привести к значительным изменениям в энергетической отрасли экономики, поскольку эти технологии вытесняют традиционные источники ископаемого топлива. Это может включать вывод из эксплуатации электростанций, работающих на ископаемом топливе, развитие новой инфраструктуры для поддержки технологий возобновляемой энергетики, а также создание новых рабочих мест и отраслей, связанных с этими технологиями. Наряду с этим, могут возникнуть проблемы с обеспечением занятости населения в регионах, где массово производится добыча ископаемого топлива.
Использование технологий возобновляемых источников энергии поможет сократить выбросы в атмосферу продуктов горения, парниковых газов и других загрязняющих веществ, что окажет положительное влияние на окружающую среду, а также будет способствовать переходу на более устойчивую энергетическую систему. Снижение загрязнённости воздуха позволит улучшить качество жизни людей и будет полезно для здоровья, а также позволит смягчить последствия изменения климата.
Потенциальное воздействие технологий возобновляемых источников энергии на энергетику и окружающую среду является значительным, и эти технологии, вероятно, получат дальнейшее развитие в будущем. Помимо прямого воздействия технологий использования возобновляемых источников энергии на энергетику и окружающую среду, существует ряд сопутствующих эффектов от применения этих технологий, к ним относятся:
– развёртывание – технологии использования возобновляемых источников энергии требуют развития новой инфраструктуры и их интеграции в существующую энергетическую систему. Это может быть сложным и трудным процессом, который потребует участия широкого круга заинтересованных сторон, включая транснациональные компании, правительства, коммунальные службы, предприятия и сообщества;
– инвестиции – внедрение технологий возобновляемой энергетики часто требует значительных предварительных инвестиций, что может стать препятствием для некоторых частных лиц и предприятий. Эту проблему можно решить с помощью стимулирования субсидий или налоговых льгот, для поощрения внедрения этих технологий;
– общественная поддержка – внедрение технологий использования возобновляемых источников энергии до сих пор является предметом оживлённых дискуссий и споров, и важно обеспечить широкую общественную поддержку развития этих технологий. Широкое освещение в СМИ преимуществ этих технологий, взаимодействие с заинтересованными сторонами помогут разрешать возникающие проблемы во благо обществу.
Развёртывание, инвестиции и общественная поддержка технологий возобновляемой энергетики являются ключевыми факторами, которые будут влиять на успех этих технологий в переходе к более устойчивой мировой энергетической системе.
Существует много видов возобновляемых источников энергии, которые могут быть реализованы в будущем. Область применения возобновляемой энергетики будет расширяться за счет использования всё новых источников энергии:
– солнечная энергия – использование солнечного света;
– энергия ветра – использование силы ветра;
– гидроэнергетика – использование падающей воды;
– геотермальная энергия – использование тепла недр Земли;
– энергия биомассы – использование органических материалов, таких как древесина или сельскохозяйственные отходы;
– энергия океана – использование океанских приливов, волн и разницы температур;
– водородные топливные элементы – использование водорода для выработки электроэнергии посредством химической реакции;
– передовая ядерная энергетика – использование небольших модульных реакторов.
В 2023 году группа исследователей из Мичиганского инженерного университета разработала новый метод производства водородного топлива с использованием процесса расщепления «солнечной воды». Они создали солнечную панель с эффективностью 9% для преобразования воды в водород и кислород. Команде удалось уменьшить размер полупроводника, ключевого компонента устройства, более чем в 100 раз по сравнению с исходным образцом. Новый метод также улавливает ранее потерянный рассеянный свет, увеличивая количество собираемой энергии и повышая общую эффективность процесса. Технология направлена на снижение стоимости более чистых материалов для производства водородного топлива, а также на повышение эффективности переработки углекислого газа в более чистое топливо.
Барьеры и проблемы
Внедрение технологий использования возобновляемых источников энергии не обходится без проблем. Существует ряд барьеров, которые могут помешать развёртыванию и широкому применению этих технологий. Некоторые из таких барьеров создают проблемы, требующие скорейшего решения:
– технические барьеры – разработка и внедрение технологий использования возобновляемых источников энергии могут быть технически сложны в реализации из-за потребности в специализированном аппаратном и программном обеспечении, а также необходимости интеграции этих технологий в существующую энергетическую систему;
– финансовые барьеры – первоначальная стоимость технологий возобновляемой энергетики может стать преградой для некоторых частных лиц и предприятий, особенно в случае крупномасштабных проектов. Эту проблему можно решить с помощью стимулов, таких как субсидии или налоговые льготы, для поощрения внедрения этих технологий;
– восприятие общественности – внедрение технологий использования возобновляемых источников энергии может неоднозначно быть воспринято обществом, вызывать споры и важно обеспечить широкую общественную поддержку этих технологий;
– регуляторные барьеры – внедрению технологий использования возобновляемых источников энергии могут препятствовать нормативные барьеры, такие как отсутствие четкой и последовательной политики или нормативно-правовой базы для поддержки этих технологий;
– прерывистость – некоторые технологии возобновляемых источников энергии, такие как солнечная и ветровая, носят прерывистый характер, а это означает, что они вырабатывают электроэнергию только в солнечную или ветреную погоду. С этим можно справиться за счет использования технологий хранения энергии или интеграции этих технологий с другими источниками электроэнергии, но это также может представлять проблему с точки зрения обеспечения стабильного и надежного снабжения электроэнергией.
Помимо барьеров и проблем на пути внедрения технологий возобновляемой энергетики, упомянутых выше, существует также ряд сопутствующих факторов, которые могут повлиять на успех этих технологий. К ним относятся:
– инфраструктура – внедрение технологий использования возобновляемых источников энергии часто требует развития новой инфраструктуры, такой как линии электропередачи или хранилища энергии. Это может стать серьёзной проблемой, особенно в тех случаях, когда отсутствует существующая инфраструктура или когда возникают логистические или экологические проблемы для развития новой инфраструктуры;
– функциональная совместимость – обеспечение совместимости технологий возобновляемых источников энергии с существующей энергетической системой имеет решающее значение для их успеха. Это может включать разработку стандартов и протоколов для обеспечения обмена данными и взаимодействия в рамках общей энергетической системы технологий, работающих на разных принципах;
– исследования и разработки – непрерывные исследования и разработки имеют решающее значение для постоянного совершенствования и развития технологий использования возобновляемых источников энергии. Это может включать разработку новых технологий, а также оптимизацию и снижение стоимости существующих технологий.
В целом, инфраструктура, функциональная совместимость, а также исследования и разработки технологий возобновляемой энергетики являются важными факторами, которые будут влиять на успех этих технологий в переходе к более устойчивой энергетической системе.
Переходя на возобновляемую энергетику, мы можем не только уменьшить углеродный след и бороться с изменением климата, но также создать новые рабочие места и стимулировать экономический рост. Инвестирование в технологии возобновляемых источников энергии полезно не только для окружающей среды, но и для бизнеса. Это беспроигрышная ситуация, которая обеспечит более устойчивое и прибыльное будущее для всех.
Глава 6. Биотехнология и генная инженерия
Используя возможности биотехнологии и генной инженерии, мы можем не только улучшить качество жизни для себя и будущих поколений, но и решить некоторые из самых серьёзных проблем, стоящих сегодня перед миром, таких как изменение климата и продовольственная безопасность.
Автор
Определение и примеры биотехнологии и генной инженерии
Биотехнология – это использование живых организмов или их продуктов для модификации или создания новых продуктов или процессов. Это широкая область, охватывающая ряд технологий и методов, включая генную инженерию, которая представляет собой прямое манипулирование ДНК организма для изменения его характеристик.
Согласно данным Всемирной организации здравоохранения (ВОЗ), биотехнологические продукты в 2019 году составляли около 20% от общего объёма фармацевтических продаж во всём мире, что позволило получить около 180 миллиардов долларов годового дохода.
Исследования Организации биотехнологических инноваций (BIO) показали, что мировой рынок биотехнологий в 2018 году оценивался в 425 миллиардов долларов и достигнет 775 миллиардов долларов стоимости к 2024 году, увеличение в среднем должно составить 10,5% в течение прогнозируемого периода.
Рассмотрим некоторые примеры биотехнологии и генной инженерии:
– генетическая модификация – это введение нового генетического материала в организм для изменения его характеристик. Генетическую модификацию можно сделать с помощью таких методов, как сплайсинг генов, представляющий собой выделение и встраивание конкретного гена в геном другого организма, или метод CRISPR, который представляет собой точное редактирование ДНК организма с помощью специализированных ферментов;
– биофармацевтические препараты – это лекарства или другие медицинские продукты, которые производятся с использованием методов биотехнологии. Это могут быть белки или другие молекулы, которые производятся с использованием генетически модифицированных организмов, а также более традиционные продукты, такие как вакцины или препараты крови;
– промышленная биотехнология – представляет собой использование методов биотехнологии для производства промышленных продуктов или материалов. Это может включать производство биотоплива, такого как этанол или биодизель, или использование микроорганизмов для производства химикатов или других материалов;
– сельскохозяйственная биотехнология – использует биотехнологические методы для улучшения или модификации сельскохозяйственных культур или животных. Это может включать разработку генетически модифицированных культур или животных, а также использование биотехнологических методов для повышения эффективности или производительности традиционных методов ведения сельского хозяйства.
Биотехнология и генная инженерия представляют собой разнообразные и быстро развивающиеся области знания, которые могут оказать существенное влияние на целый ряд отраслей и секторов экономики.
Помимо упомянутых выше примеров биотехнологии и генной инженерии стоит отметить ряд ключевых аспектов применения этих технологий:
– преимущества – биотехнология и генная инженерия могут обеспечить ряд преимуществ в различных сферах деятельности человека, включая разработку новых и более эффективных лекарств и методов лечения, производство более устойчивых и экологически чистых продуктов и материалов, а также повышение производительности и эффективности сельского хозяйства;
– риски и проблемы – существенными рисками, связанными с биотехнологией и генной инженерией, являются потенциальное негативное воздействие на окружающую среду, этические проблемы, связанные с модификацией живых организмов, а также возможность использования этих технологий в качестве биологического оружия;
– регулирование – биотехнология и генная инженерия регулируются рядом национальных и международных органов, которые осуществляют надзор за исследованиями, разработками и использованием этих технологий. Это включает в себя разработку руководящих документов и правил для обеспечения безопасности и этичного использования этих технологий.
Дальнейшее развитие и использование биотехнологий и генной инженерии будет зависеть от эффективного управления всеми рисками и ответственного регулирования этих областей знания.
Текущие и потенциальные приложения
Согласно данным Всемирной организации интеллектуальной собственности (ВОИС), количество патентов, поданных на изобретения в области биотехнологии в последнее время, неуклонно росло: с 27 000 в 2010 году до более 60 000 в 2018 году. Биотехнология и генная инженерия имеют широкий спектр текущих и потенциальных применений в различных секторах и отраслях. Некоторыми из ключевых областей, в которых эти технологии в настоящее время используются или могут быть использованы, являются:
– медицина – биотехнологии и генная инженерия используются для разработки новых и более эффективных лекарств и методов лечения, в том числе таргетной терапии, специально предназначенной для воздействия на основные причины заболеваний, таких как рак или генетические нарушения. Эти технологии также используются для разработки новых средств диагностики и лечения таких состояний, как болезнь Альцгеймера или диабет. По данным Национального института здравоохранения (NIH), генетическое тестирование является быстрорастущей областью в медицине, при этом количество доступных генетических тестов увеличилось с 1500 в 2016 году до более 4000 в 2019 году;