
Моделирование рассуждений. Опыт анализа мыслительных актов

Интерпретация чисел в таблице следующая. Опрашиваемый считает, что можно говорить «почти все», когда явление это встречается не реже, чем в 95 случаях из 100. Аналогично интерпретируются и остальные элементы таблицы. В первом столбце стоят значения γ, во втором β, а в третьем ω. Каждая строка может быть использована для решения задачи линейного программирования, которую мы сформулировали. Если решить возникающие четыре задачи, то выяснится, что силлогизм бабушки оказывается истинным во всех случаях, кроме третьего. В третьем случае прав Сумбурук, а бабушка ошибается.
Из сказанного ясно, что при исследовании нечетких силлогизмов (или D-cиллогизмов, как их принято называть) необходимо анализировать области в пространстве параметров β, γ, ω, в которых будут истинны или ложны те или иные силлогизмы. В частности, для силлогизма бабушки доказывается следующее утверждение, которое естественно было бы назвать Теоремой бармена: «Силлогизм бабушки истинен только в тех точках параметрического пространства, в которых выполняется соотношение α≤max[0,2−1/ω, 1−(1−γ)(γ+1/ω)]». Но, наверное, ни бармен, ни Сумбурук не смогли бы так четко сформулировать нужный для разрешения их спора результат.
Рассуждая о споре в баре, мы незаметно сформулировали метод формального поиска оценок нечетких квантификаторов в схемах рассуждений. Ведь если вернуться к схемам предшествующего раздела, то становится ясным, что метод решения силлогизма бабушки вполне пригоден для поиска

Коллекция схем
Среди схем правдоподобных рассуждений встречаются не только те, которые мы расссмотрели и которые основаны на индуктивном выводе, аналогиях или нечетких квантификаторах. Многими исследователями предлагались и иные схемы. Их количество достаточно велико и продолжает расти. В этом разделе мы приведем (практически без комментариев) примеры схем, в основе которых лежат соображения, связанные с теорией вероятностей и аналогией, а также несколько схем, типичных для теории возможностей, активно развивающейся в последние годы ветви теории рассуждений.
Рассмотрим прежде всего схемы рассуждений, опирающиеся на свойства вероятностей, т.е. вероятностные схемы рассуждений.

Рассуждением, основанным, например, на схеме 2, может служить следующее: «С вероятностью, большей 0,7, при переохлаждении двигателя он не заводится с помощью стартера. Вероятность того, что он не заводится, меньше 0,5. Следовательно, вероятность того, что двигатель переохлажден, меньше min(1,1–0,7+0,5), т.е. меньше 0,8». Так же нетрудно придумать примеры и для других схем вероятностных рассуждений.
Рассмотрим две схемы рассуждения с учетом необходимых условий.

Значения q и r необходимости в этих схемах могут оцениваться в каких-то специальных единицах. Можно считать, например, что имеется лингвистическая шкала нечетких квантификаторов необходимости. Тогда q и r будут соответствовать некоторые интервалы или усредненные характеристики этих интервалов. В качестве примера рассуждения с учетом необходимых условий в соответствии со схемой 5 приведем следующее рассуждение: «Если у меня будет дача, то необходимо будет купить велосипед. Дача мне крайне необходима. Тогда покупка велосипеда для меня необходима».
Рассмотрим еще две схемы, в которых наряду с необходимостью учитывается возможность некоторых фактов, явлений или действий. Подобные схемы (как и две предшествующие) характерны для упоминавшейся теории возможностей.

Пример рассуждения, основанного на схеме 7: «Когда поднимается температура в реакторе, чрезвычайно необходимо понизить в нем давление. Возможность повышения температуры в реакторе высока. Следовательно, возможность того, что надо будет снижать давление в реакторе, либо больше нуля, либо больше той возможности, которая приписана событию повышения температуры». Альтернативный характер этого рассуждения обусловлен тем, что q и r при проведении его не были оценены количественно. Это не позволяет сделать окончательный альтернативный вывод в следствии.
Завершим раздел еще тремя схемами рассуждений, в которых учитывается возможная взаимосвязь А и В, а также некоторые соображения из рассуждений по аналогии.

Каждый, кого интересуют схемы правдоподобных рассуждений, может без труда увеличить нашу коллекцию, например, заимствовав их из книги Д. Пойи, приведенной в списке литературы. Нам же необходимо двигаться дальше к тем человеческим схемам рассуждений, в которых активно используются знания, хранящиеся в его памяти, т.е. к рассуждениям, на которые опирается интеллектуальная деятельность человека и ее моделирование в современных интеллектуальных системах.
Глава пятая. ВЫВОД В БАЗЕ ЗНАНИЙ
Приходится порой простые мыслидоказывать всерьез, как теоремы.О. Сулейменов. От января до апреляЧто такое интеллектуальная система
Проблема моделирования человеческих рассуждений стала чрезвычайно актуальной в конце 70-х годов, когда в области искусственного интеллекта появились практически интересные системы. В последующие несколько лет возникла новая отрасль индустрии – производство интеллектуальных систем.
Причин скачкообразного развития работ по созданию систем искусственного интеллекта было несколько. Главнейшими из них можно считать три: необходимость создания ЭВМ пятого поколения, переход к роботизированным производствам и появление экспертных систем.
Как известно, ЭВМ пятого поколения отличаются от машин предыдущих поколений тем, что в них встроены функции программиста. По словесному заданию задачи, сформулированному на ограниченном профессиональном языке, эти ЭВМ способны сами построить необходимую рабочую программу (синтезировать ее из отдельных модулей, хранящихся в памяти ЭВМ) и выполнить ее. Для этого в состав ЭВМ должна входить база знаний, в которой хранится информация о закономерностях, присущих данной проблемной области, и методах решения характерных для нее задач. Кроме того, в состав ЭВМ должен входить специальный блок – решатель, в который встроены процедуры, подобные логическому выводу. С помощью решателя на основании сведений из базы знаний автоматически синтезируются нужные для пользователя программы. На рис. 29 приведена общая структура ЭВМ пятого поколения. Отметим, что процессор, показанный на рисунке, – это обычное арифметическое устройство с необходимой оперативной памятью, а внешняя память служит для хранения данных, нужных для решения задач. Таким образом, база знаний является новым специфическим блоком (как и система общения и решатель) в структуре ЭВМ пятого поколения.

Рис. 29.
В роботизированных производствах используются роботы третьего поколения. Они должны быть достаточно автономны в своих действиях и уметь выполнять необходимый набор операций в динамически изменяющихся условиях производства. Это означает, что они не могут довольствоваться набором встроенных в них программ жесткого поведения. Интеллектуальный уровень таких роботов должен быть достаточно высоким. В их систему управления необходимо включить специальный блок – планировщик, задачей которого является составление программы действий робота в тех реальных условиях окружающей среды, которые в данный момент наблюдаются рецепторной системой робота. Для планирования целесообразной деятельности робот третьего поколения должен обладать определенными знаниями о свойствах окружающей среды и методах достижения целей в ней. Эти знания хранятся в его базе знаний, показанной в общей структуре робота на рис. 30. Глядя на этот рисунок, легко установить аналогии со схемой, показанной на предыдущем рисунке. В ЭВМ пятого поколения и в роботах третьего поколения осуществляется планирование будущей деятельности: автоматический синтез программы, выполняемый решателем, и программа деятельности, создаваемая планировщиком. Оба блока работают на основе знаний, хранящихся в базе знаний.

Рис. 30.
Экспертные системы, структура которых показана на рис. 31, также содержат базу знаний и логический блок, функции которого похожи на функции решателя и планировщика. Задача логического блока состоит в поиске вывода, ответа на входное сообщение, поступившее в систему. В базе знаний хранится необходимая информация о проблемной области, в которой работает пользователь. Его запросы поступают на профессиональном ограниченном естественном языке. В системе общения они преобразуются во внутреннее представление, с которым работает логический блок. Это внутреннее представление преобразуется в запрос к базе знаний. Если прямого ответа на запрос в базе нет, то логический блок осуществляет поиск косвенной информации, получаемой из хранящейся в базе с помощью достоверного или правдоподобного вывода. Система объяснения (это специфический блок, отличающий экспертные системы от других интеллектуальных систем) при необходимости по требованию пользователя поясняет ему, как получена та информация, которая выдана в качестве ответа.

Рис. 31.
Мы хотим отметить, что ядром всех основных типов рассмотренных интеллектуальных систем являются база знаний и блок, осуществляющий вывод с помощью знаний (решатель, планировщик или логический блок). Этот вывод составляет основную процедуру, реализуемую в интеллектуальных системах.
Знания о внешнем мире могут иметь двоякую природу. Они могут содержать декларативное описание фактов и явлений внешнего мира, фиксирующее их наличие или отсутствие, а также основные связи и закономерности, в которые эти факты и явления входят. Но они могут содержать и процедурные описания того, как надо манипулировать с этими фактами и достигать целей, интересных для системы. Для описания знаний в интеллектуальных системах используются специальные языки описания знаний (ЯОЗ). Эти языки могут иметь различную природу. Нас будут интересовать (из-за темы данной книги) лишь языки логического типа. Простейшими видами таких ЯОЗ являются языки исчисления высказываний или исчисления предикатов вместе с теми процедурами вывода, которые для них известны. Однако в современных интеллектуальных системах такие языки используются довольно редко. Куда более распространены в них языки, основанные на продукциях. Продукции в общем виде можно записать в форме «Если…, то…». Сама по себе эта форма оказывается весьма характерной для фиксации знаний в различных областях человеческой деятельности. Вот несколько примеров текстов, взятых почти наугад из различных книг.
1. Если Академия заблагорассудит присоединить к себе ученого русского или иностранца, который не столько еще известен, чтобы мог требовать чести быть почетным членом, но своими полезными сочинениями или познаниями, или же ревностию и старанием, оказав полезные Академии услуги, обратил на себя отличное внимание, то она принимает его в корреспонденты, которые также разделяются на русских и иностранных. (Устав Санкт-Петербургской Академии наук 1836 года, № 85)
2. Если враг не сдается, то его уничтожают. Если кто к нам с мечем придет, то от меча и погибнет. (Высказывания полководцев.)
3. Если температура в верхней зоне превысит 75°, то необходимо открыть задвижку № 7. (Из инструкции.)
Число подобных примеров можно увеличивать до бесконечности. Они показывают, что представление фрагментов наших знаний о внешнем мире и действиях в нем в виде продукций имеет весьма большое распространение. Часть специалистов по интеллектуальным системам считает, что запись знаний в виде систем продукций носит универсальный характер – любые знания можно записать в такой форме. Они приводят немало примеров, когда знания, внешне не имеющие продукционной формы, удается перевести в систему продукций. Вот один из таких примеров.
Химические реакции мы со школьных лет привыкли воспринимать в форме соотношений следующего вида:

И т.д.
Покажем, как подобные утверждения можно записать в продукционной форме. Введем шесть сортов базовых элементов. К первому сорту отнесем металлы: Q1={Cu,Mg,Zn,…}. Ко второму – газы: Q2={H2,О,N,…}, к третьему – воду: Q3={H2O}. Четвертый сорт составляют окиси: Q4={MgO,CuО,…}. Пятый сорт образуют кислоты: Q5={H2SO4,HCl,…}. Наконец, шестой сорт образуют соли: Q6={ZnSO4,NaCl,…}. Зададим два базовых отображения. Первое отображает элементы из Q4 в элементы Q1. С его помощью для окисей выделяются основания. Второе отображение сопоставляет с именами веществ (под веществом будем понимать металл, газ, окись, воду, кислоту или соль) их химические формулы. Введем еще два оператора, которые будем использовать в продукциях: A(q) и E(q). Оператор A(q) добавляет в базу знаний q, а оператор E(q) убирает q из базы. Выпишем первый тип продукций для описания химических реакций.

Эта продукция годится для описания двух из приведенных выше химических реакций. Для описания третьей реакции используем другой тип продукций.

Вспомним программу «Логик-теоретик», которую мы обсуждали в третьей главе. Она была основана на том, что при доказательстве равенства двух выражений в исчислении высказываний использовалось понятие различия в двух выражениях и подбирались такие преобразования, которые эти различия устраняли. Для соотнесения различий с преобразованиями была построена таблица, в которой указывалось, какие преобразования какие различия устраняют. От этой таблицы чрезвычайно легко перейти к продукционной системе. Если i есть номер различия, a F* – одно из преобразований, то запись i

Два последних примера показывают, что продукциями являются не только те выражения, которые имеют форму «Если…, то…», но и многие другие выражения. К ним, по сути, сводятся все каузальные, т.е. причинно-cледственные утверждения, подобные тем, которые мы обсуждали в предшествующей главе. К ним же относятся и любые схемы вывода типа «посылки – следствие». Замкнутые системы правил типа законов короля Павзолия, описанных в романе Пьера Луиса «Приключения короля Павзолия»[9], также могут рассматриваться как особая форма продукций. Даже такие утверждения, как знаменитое «Если звезды зажигают, значит, это кому-то нужно» (В. Маяковский), можно рассматривать как продукцию.
Продукционные системы получили при представлении знаний в последнее время наибольшее распространение. Поэтому посвятим им специальный раздел нашей книги.
Продукционные системы
Анализ структур ЭВМ пятого поколения, роботов автономного типа и экспертных систем приводит к обобщенной структуре, показанной на рис. 32. Эта схема при условии, что система R представляет собой продукционную систему, может послужить основой для классификации типов продукций. На ней показано взаимодействие «рассуждающей» системы с внешним миром и базой знаний, из которой рассуждающая система может черпать накопленную ранее информацию о закономерностях этого мира и его состояниях. Из внешнего мира в рассуждающую систему приходит сиюминутная, текущая информация о наблюдаемых в этом мире фактах и явлениях. А из базы знаний поступает информация, имеющая более фундаментальное значение. Она может описывать законы внешнего мира, правила действий в нем, целевые структуры или ожидаемые отклики внешнего мира на те или иные воздействия на него. В памяти рассуждающей системы хранится текущая информация, связанная с ходом рассуждений. Со временем она либо исчезает, либо передается для хранения в базу знаний. Последнее происходит лишь в том случае, когда в процессе рассуждений появилась информация, которая может оказаться полезной для рассуждающей системы в будущем.

Рис. 32.
Теперь приступим к классификации продукций.
1. Продукции типа AW

В качестве AW может выступать не только некоторое сообщение о W или некоторый факт, имеющий место во внешнем мире, но и прямое воздействие из внешнего мира на рассуждающую систему. Но что бы ни стояло в левой части продукции AB

2. Продукции типа AW

3. Продукции типа AK

4. Продукции типа AR

5. Продукции типа AK

6. Продукции типа AW

7. Продукции типа AR

8. Продукции типа AR

9. Продукции типа АК

Сказанное наводит на мысль, что продукции могут иметь весьма различное значение. В качестве их левых и правых частей могут выступать и некоторые утверждения, и действия. Возможны не только те интерпретации, которые мы привели выше, но и ряд других. Например, продукции типа AW

