
Полная версия
The Variation of Animals and Plants under Domestication — Volume 1
I have alluded to a single instance of the separation and preservation of a particular stock of bees. Mr. Lowe (8/64. 'The Cottage Gardener' May 1860 page 110; and ditto in 'Journal of Hort.' 1862 page 242.) procured some bees from a cottager a few miles from Edinburgh, and perceived that they differed from the common bee in the hairs on the head and thorax being lighter coloured and more profuse in quantity. From the date of the introduction of the Ligurian bee into Great Britain we may feel sure that these bees had not been crossed with this form. Mr. Lowe propagated this variety, but unfortunately did not separate the stock from his other bees, and after three generations the new character was almost completely lost. Nevertheless, as he adds, "a great number of the bees still retain traces, though faint, of the original colony." This case shows us what could probably be effected by careful and long-continued selection applied exclusively to the workers, for, as we have seen, queens and drones cannot be selected and paired.
SILK-MOTHS.
These insects are in several respects interesting to us, more especially because they have varied largely at an early period of life, and the variations have been inherited at corresponding periods. As the value of the silk-moth depends entirely on the cocoon, every change in its structure and qualities has been carefully attended to, and races differing much in the cocoon, but hardly at all in the adult state, have been produced. With the races of most other domestic animals, the young resemble each other closely, whilst the adults differ much.
It would be useless, even if it were possible, to describe all the many kinds of silkworms. Several distinct species exist in India and China which produce useful silk, and some of these are capable of freely crossing with the common silk-moth, as has been recently ascertained in France. Captain Hutton (8/65. 'Transact. Entomolog. Soc.' 3rd series volume 3 pages 143-173 and pages 295-331.) states that throughout the world at least six species have been domesticated; and he believes that the silk-moths reared in Europe belong to two or three species. This, however, is not the opinion of several capable judges who have particularly attended to the cultivation of this insect in France; and hardly accords with some facts presently to be given.
The common silk-moth (Bombyx mori) was brought to Constantinople in the sixth century, whence it was carried into Italy, and in 1494 into France. (8/66. Godron 'De l'Espece' 1859 tome 1 page 460. The antiquity of the silkworm in China is given on the authority of Stanislas Julien.) Everything has been favourable for the variation of this insect. It is believed to have been domesticated in China as long ago as 2700 B.C. It has been kept under unnatural and diversified conditions of life, and has been transported into many countries. There is reason to believe that the nature of the food given to the caterpillar influences to a certain extent the character of the breed. (8/67. See the remarks of Prof. Westwood, Gen. Hearsey and others at the meeting of the Entomolog. Soc. of London July 1861.) Disuse has apparently aided in checking the development of the wings. But the most important element in the production of the many now existing, much modified races, no doubt has been the close attention which has long been applied in many countries to every promising variation. The care taken in Europe in the selection of the best cocoons and moths for breeding is notorious (8/68. See for instance M. A. de Quatrefages 'Etudes sur les Maladies actuelles du Ver a Soie' 1859 page 101.), and the production of eggs is followed as a distinct trade in parts of France. I have made inquiries through Dr. Falconer, and am assured that in India the natives are equally careful in the process of selection. In China the production of eggs is confined to certain favourable districts, and the raisers are precluded by law from producing silk, so that their whole attention may be necessarily given up to this one object. (8/69. My authorities for the statements will be given in the chapter on Selection.)
[The following details on the differences between the several breeds are taken, when not stated to the contrary, from M. Robinet's excellent work (8/70. 'Manuel de l'Educateur de Vers a Soie' 1848.), which bears every sign of care and large experience. The EGGS in the different races vary in colour, in shape (being round, elliptic or oval), and in size. The eggs laid in June in the south of France, and in July in the central provinces, do not hatch until the following spring; and it is in vain, says M. Robinet, to expose them to a temperature gradually raised, in order that the caterpillar may be quickly developed. Yet occasionally, without any known cause, batches of eggs are produced, which immediately begin to undergo the proper changes, and are hatched in from twenty to thirty days. From these and some other analogous facts it may be concluded that the Trevoltini silkworms of Italy, of which the caterpillars are hatched in from fifteen to twenty days, do not necessarily form, as has been maintained, a distinct species. Although the breeds which live in temperate countries produce eggs which cannot be immediately hatched by artificial heat, yet when they are removed to and reared in a hot country they gradually acquire the character of quick development, as in the Trevoltini races. (8/71. Robinet ibid pages 12, 318. I may add that the eggs of N. American silkworms taken to the Sandwich Islands produced moths at very irregular periods; and the moths thus raised yielded eggs which were even worse in this respect. Some were hatched in ten days, and others not until after the lapse of many months. No doubt a regular early character would ultimately have been acquired. See review in 'Athenaeum' 1844 page 329 of J. Jarves 'Scenes in the Sandwich Islands.')
CATERPILLARS.
These vary greatly in size and colour. The skin is generally white, sometimes mottled with black or grey, and occasionally quite black. The colour, however, as M. Robinet asserts, is not constant, even in perfectly pure breeds; except in the race tigree, so called from being marked with transverse black stripes. As the general colour of the caterpillar is not correlated with that of the silk (8/72. 'The Art of rearing Silkworms' translated from Count Dandolo 1825 page 23.), this character is disregarded by cultivators, and has not been fixed by selection. Captain Hutton, in the paper before referred to, has argued with much force that the dark tiger- like marks, which so frequently appear during the later moults in the caterpillars of various breeds, are due to reversion; for the caterpillars of several allied wild species of Bombyx are marked and coloured in this manner. He separated some caterpillars with the tiger-like marks, and in the succeeding spring (pages 149, 298) nearly all the caterpillars reared from them were dark-brindled, and the tints became still darker in the third generation. The moths reared from these caterpillars (8/73. 'Transact. Ent. Soc.' ut supra pages 153, 308.) also became darker, and resembled in colouring the wild B. huttoni. On this view of the tiger-like marks being due to reversion, the persistency with which they are transmitted is intelligible.
Several years ago Mrs. Whitby took great pains in breeding silkworms on a large scale, and she informed me that some of her caterpillars had dark eyebrows. This is probably the first step in reversion towards the tiger- like marks, and I was curious to know whether so trifling a character would be inherited. At my request she separated in 1848 twenty of these caterpillars, and having kept the moths separate, bred from them. Of the many caterpillars thus reared, "every one without exception had eyebrows, some darker and more decidedly marked than the others, but ALL had eyebrows more or less plainly visible." Black caterpillars occasionally appear amongst those of the common kind, but in so variable a manner, that, according to M. Robinet, the same race will one year exclusively produce white caterpillars, and the next year many black ones; nevertheless, I have been informed by M. A. Bossi of Geneva, that, if these black caterpillars are separately bred from, they reproduce the same colour; but the cocoons and moths reared from them do not present any difference.
The caterpillar in Europe ordinarily moults four times before passing into the cocoon stage; but there are races "a trois mues," and the Trevoltini race likewise moults only thrice. It might have been thought that so important a physiological difference would not have arisen under domestication; but M. Robinet (8/74. Robinet ibid page 317.) states that, on the one hand, ordinary caterpillars occasionally spin their cocoons after only three moults, and, on the other hand, "presque toutes les races a trois mues, que nous avons experimentees, ont fait quatre mues a la seconde ou a la troisieme annee, ce qui semble prouver qu'il a suffi de les placer dans des conditions favorables pour leur rendre une faculte qu'elles avaient perdue sous des influences moins favorables."
COCOONS.
The caterpillar in changing into the cocoon loses about 50 per cent of its weight; but the amount of loss differs in different breeds, and this is of importance to the cultivator. The cocoon in the different races presents characteristic differences; being large or small; — nearly spherical with no constriction, as in the Race de Loriol, or cylindrical, with either a deep or slight constriction in the middle; with the two ends, or with one end alone, more or less pointed. The silk varies in fineness and quality, and in being nearly white, but of two tints, or yellow. Generally the colour of the silk is not strictly inherited: but in the chapter on Selection I shall give a curious account how, in the course of sixty-five generations, the number of yellow cocoons in one breed has been reduced in France from one hundred to thirty-five in the thousand. According to Robinet, the white race, called Sina, by careful selection during the last seventy-five years, "est arrivee a un tel etat de purete, qu'on ne voit pas un seul cocon jaune dans des millions de cocons blancs." (8/75. Robinet ibid pages 306-317.) Cocoons are sometimes formed, as is well known, entirely destitute of silk, which yet produce moths; unfortunately Mrs. Whitby was prevented by an accident from ascertaining whether this character would prove hereditary.
ADULT STAGE.
I can find no account of any constant difference in the moths of the most distinct races. Mrs. Whitby assured me that there was none in the several kinds bred by her; and I have received a similar statement from the eminent naturalist, M. de Quatrefages. Captain Hutton also says (8/76. 'Transact. Ent. Soc.' ut supra page 317.) that the moths of all kinds vary much in colour, but in nearly the same inconstant manner. Considering how much the cocoons in the several races differ, this fact is of interest, and may probably be accounted for on the same principle as the fluctuating variability of colour in the caterpillar, namely, that there has been no motive for selecting and perpetuating any particular variation.
The males of the wild Bombycidae "fly swiftly in the day-time and evening, but the females are usually very sluggish and inactive." (8/77. Stephen's Illustrations, 'Haustellata' volume 2 page 35. See also Capt. Hutton 'Transact. Ent. Soc.' ibid page 152.) In several moths of this family the females have abortive wings, but no instance is known of the males being incapable of flight, for in this case the species could hardly have been perpetuated. In the silk-moth both sexes have imperfect, crumpled wings, and are incapable of flight; but still there is a trace of the characteristic difference in the two sexes; for though, on comparing a number of males and females, I could detect no difference in the development of their wings, yet I was assured by Mrs. Whitby that the males of the moths bred by her used their wings more than the females, and could flutter downwards, though never upwards. She also states that, when the females first emerge from the cocoon, their wings are less expanded than those of the male. The degree of imperfection, however, in the wings varies much in different races and under different circumstances. M. Quatrefages (8/78. 'Etudes sur les Maladies du Ver a Soie' 1859 pages 304, 209.) says that he has seen a number of moths with their wings reduced to a third, fourth, or tenth part of their normal dimensions, and even to mere short straight stumps: "il me semble qu'il y a la un veritable arret de developpement partiel." On the other hand, he describes the female moths of the Andre Jean breed as having "leurs ailes larges et etalees. Un seul presente quelques courbures irregulieres et des plis anormaux." As moths and butterflies of all kinds reared from wild caterpillars under confinement often have crippled wings, the same cause, whatever it may be, has probably acted on silk-moths, but the disuse of their wings during so many generations has, it may be suspected, likewise come into play.
The moths of many breeds fail to glue their eggs to the surface on which they are laid (8/79. Quatrefages 'Etudes' etc. page 214.) but this proceeds, according to Capt. Hutton (8/80. 'Transact. Ent. Soc.' ut supra page 151.), merely from the glands of the ovipositor being weakened.
As with other long-domesticated animals, the instincts of the silk-moth have suffered. The caterpillars, when placed on a mulberry-tree, often commit the strange mistake of devouring the base of the leaf on which they are feeding, and consequently fall down; but they are capable, according to M. Robinet (8/81. 'Manuel de l'Educateur' etc. page 26.) of again crawling up the trunk. Even this capacity sometimes fails, for M. Martins (8/82. Godron 'De l'Espece' page 462.) placed some caterpillars on a tree, and those which fell were not able to remount and perished of hunger; they were even incapable of passing from leaf to leaf.
Some of the modifications which the silk-moth has undergone stand in correlation with one another. Thus, the eggs of the moths which produce white cocoons and of those which produce yellow cocoons differ slightly in tint. The abdominal feet, also, of the caterpillars which yield white cocoons are always white, whilst those which give yellow cocoons are invariably yellow. (8/83. Quatrefages 'Etudes' etc. pages 12, 209, 214.) We have seen that the caterpillars with dark tiger-like stripes produce moths which are more darkly shaded than other moths. It seems well established (8/84. Robinet 'Manuel' etc. page 303.) that in France the caterpillars of the races which produce white silk, and certain black caterpillars, have resisted, better than other races, the disease which has recently devastated the silk-districts. Lastly, the races differ constitutionally, for some do not succeed so well under a temperate climate as others; and a damp soil does not equally injure all the races. (8/85. Robinet ibid page 15.)]
From these various facts we learn that silk-moths, like the higher animals, vary greatly under long-continued domestication. We learn also the more important fact that variations may occur at various periods of life, and be inherited at a corresponding period. And finally we see that insects are amenable to the great principle of Selection.
CHAPTER 1.IX
CULTIVATED PLANTS: CEREAL AND CULINARY PLANTS.
PRELIMINARY REMARKS ON THE NUMBER AND PARENTAGE OF CULTIVATED PLANTS. FIRST STEPS IN CULTIVATION. GEOGRAPHICAL DISTRIBUTION OF CULTIVATED PLANTS.
CEREALIA. DOUBTS ON THE NUMBER OF SPECIES.
WHEAT: VARIETIES OF. INDIVIDUAL VARIABILITY. CHANGED HABITS. SELECTION. ANCIENT HISTORY OF THE VARIETIES.
MAIZE: GREAT VARIATION OF. DIRECT ACTION OF CLIMATE ON.
CULINARY PLANTS.
CABBAGES: VARIETIES OF, IN FOLIAGE AND STEMS, BUT NOT IN OTHER PARTS. PARENTAGE OF. OTHER SPECIES OF BRASSICA.
PEAS: AMOUNT OF DIFFERENCE IN THE SEVERAL KINDS, CHIEFLY IN THE PODS AND SEED. SOME VARIETIES CONSTANT, SOME HIGHLY VARIABLE. DO NOT INTERCROSS.
BEANS.
POTATOES: NUMEROUS VARIETIES OF. DIFFERING LITTLE EXCEPT IN THE TUBERS. CHARACTERS INHERITED.
I shall not enter into so much detail on the variability of cultivated plants, as in the case of domesticated animals. The subject is involved in much difficulty. Botanists have generally neglected cultivated varieties, as beneath their notice. In several cases the wild prototype is unknown or doubtfully known; and in other cases it is hardly possible to distinguish between escaped seedlings and truly wild plants, so that there is no safe standard of comparison by which to judge of any supposed amount of change. Not a few botanists believe that several of our anciently cultivated plants have become so profoundly modified that it is not possible now to recognise their aboriginal parent-forms. Equally perplexing are the doubts whether some of them are descended from one species, or from several inextricably commingled by crossing and variation. Variations often pass into, and cannot be distinguished from, monstrosities; and monstrosities are of little significance for our purpose. Many varieties are propagated solely by grafts, buds, layers, bulbs, etc., and frequently it is not known how far their peculiarities can be transmitted by seminal generation. Nevertheless, some facts of value can be gleaned: and other facts will hereafter be incidentally given. One chief object in the two following chapters is to show how many characters in our cultivated plants have become variable.
Before entering on details a few general remarks on the origin of cultivated plants may be introduced. M. Alph. De Candolle (9/1. 'Geographie botanique raisonnee' 1855 pages 810 to 991.) in an admirable discussion on this subject, in which he displays a wonderful amount of knowledge, gives a list of 157 of the most useful cultivated plants. Of these he believes that 85 are almost certainly known in their wild state; but on this head other competent judges (9/2. Review by Mr. Bentham in 'Hort. Journal' volume 9 1855 page 133 entitled 'Historical Notes on cultivated Plants' by Dr. A. Targioni-Tozzetti. See also 'Edinburgh Review' 1866 page 510.) entertain great doubts. Of 40 of them, the origin is admitted by M. De Candolle to be doubtful, either from a certain amount of dissimilarity which they present when compared with their nearest allies in a wild state, or from the probability of the latter not being truly wild plants, but seedlings escaped from culture. Of the entire 157, 32 alone are ranked by M. De Candolle as quite unknown in their aboriginal condition. But it should be observed that he does not include in his list several plants which present ill-defined characters, namely, the various forms of pumpkins, millet, sorghum, kidney-bean, dolichos, capsicum, and indigo. Nor does he include flowers; and several of the more anciently cultivated flowers, such as certain roses, the common Imperial lily, the tuberose, and even the lilac, are said (9/3. 'Hist. Notes' as above by Targioni-Tozzetti.) not to be known in the wild state.
From the relative numbers above given, and from other arguments of much weight, M. De Candolle concludes that plants have rarely been so much modified by culture that they cannot be identified with their wild prototypes. But on this view, considering that savages probably would not have chosen rare plants for cultivation, that useful plants are generally conspicuous, and that they could not have been the inhabitants of deserts or of remote and recently discovered islands, it appears strange to me that so many of our cultivated plants should be still unknown or only doubtfully known in the wild state. If, on the other hand, many of these plants have been profoundly modified by culture, the difficulty disappears. The difficulty would also be removed if they have been exterminated during the progress of civilisation; but M. De Candolle has shown that this probably has seldom occurred. As soon as a plant was cultivated in any country, the half-civilised inhabitants would no longer have need to search the whole surface of the land for it, and thus lead to its extirpation; and even if this did occur during a famine, dormant seeds would be left in the ground. In tropical countries the wild luxuriance of nature, as was long ago remarked by Humboldt, overpowers the feeble efforts of man. In anciently civilised temperate countries, where the whole face of the land has been greatly changed, it can hardly be doubted that some plants have become extinct; nevertheless De Candolle has shown that all the plants historically known to have been first cultivated in Europe still exist here in the wild state.
MM. Loiseleur-Deslongchamps (9/4. 'Considerations sur les Cereales' 1842 page 37. 'Geographie Bot.' 1855 page 930. "Plus on suppose l'agriculture ancienne et remontant a une epoque d'ignorance, plus il est probable que les cultivateurs avaient choisi des especes offrant a l'origine meme un avantage incontestable.") and De Candolle have remarked that our cultivated plants, more especially the cereals, must originally have existed in nearly their present state; for otherwise they would not have been noticed and valued as objects of food. But these authors apparently have not considered the many accounts given by travellers of the wretched food collected by savages. I have read an account of the savages of Australia cooking, during a dearth, many vegetables in various ways, in the hopes of rendering them innocuous and more nutritious. Dr. Hooker found the half-starved inhabitants of a village in Sikhim suffering greatly from having eaten arum-roots (9/5. Dr. Hooker has given me this information. See also his 'Himalayan Journals' 1854 volume 2 page 49.), which they had pounded and left for several days to ferment, so as partially to destroy their poisonous nature; and he adds that they cooked and ate many other deleterious plants. Sir Andrew Smith informs me that in South Africa a large number of fruits and succulent leaves, and especially roots, are used in times of scarcity. The natives, indeed, know the properties of a long catalogue of plants, some having been found during famines to be eatable, others injurious to health, or even destructive to life. He met a party of Baquanas who, having been expelled by the conquering Zulus, had lived for years on any roots or leaves which afforded some little nutriment and distended their stomachs, so as to relieve the pangs of hunger. They looked like walking skeletons, and suffered fearfully from constipation. Sir Andrew Smith also informs me that on such occasions the natives observe as a guide for themselves, what the wild animals, especially baboons and monkeys, eat.
From innumerable experiments made through dire necessity by the savages of every land, with the results handed down by tradition, the nutritious, stimulating, and medicinal properties of the most unpromising plants were probably first discovered. It appears, for instance, at first an inexplicable fact that untutored man, in three distant quarters of the world, should have discovered, amongst a host of native plants, that the leaves of the tea-plant and mattee, and the berries of the coffee, all included a stimulating and nutritious essence, now known to be chemically the same. We can also see that savages suffering from severe constipation would naturally observe whether any of the roots which they devoured acted as aperients. We probably owe our knowledge of the uses of almost all plants to man having originally existed in a barbarous state, and having been often compelled by severe want to try as food almost everything which he could chew and swallow.
From what we know of the habits of savages in many quarters of the world, there is no reason to suppose that our cereal plants originally existed in their present state so valuable to man. Let us look to one continent alone, namely, Africa: Barth (9/6. 'Travels in Central Africa' English translation volume 1 pages 529 and 390; volume 2 pages 29, 265, 270. Livingstone 'Travels' page 551.) states that the slaves over a large part of the central region regularly collect the seeds of a wild grass, the Pennisetum distichum; in another district he saw women collecting the seeds of a Poa by swinging a sort of basket through the rich meadow-land. Near Tete, Livingstone observed the natives collecting the seeds of a wild grass, and farther south, as Andersson informs me, the natives largely use the seed of a grass of about the size of canary-seed, which they boil in water. They eat also the roots of certain reeds, and every one has read of the Bushmen prowling about and digging up with a fire-hardened stake various roots. Similar facts with respect to the collection of seeds of wild grasses in other parts of the world could be given. (9/7. For instance in both North and South America. Mr. Edgeworth 'Journal Proc. Linn. Soc.' vol 6 Bot. 1862 page 181 states that in the deserts of the Punjab poor women sweep up, "by a whisk into straw baskets," the seeds of four genera of grasses, namely, of Agrostis, Panicum, Cenchrus, and Pennisetum, as well as the seeds of four other genera belonging to distinct families.)