bannerbanner
The Variation of Animals and Plants under Domestication — Volume 1
The Variation of Animals and Plants under Domestication — Volume 1полная версия

Полная версия

The Variation of Animals and Plants under Domestication — Volume 1

Язык: Английский
Год издания: 2017
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
28 из 47

From these considerations there can hardly be a doubt that the wild duck is the parent of the common domestic kind; nor need we look to other species for the parentage of the more distinct breeds, namely, Penguin, Call, Hook- billed, Tufted, and Labrador ducks. I will not repeat the arguments used in the previous chapters on the improbability of man having in ancient times domesticated several species since become unknown or extinct, though ducks are not readily exterminated in the wild state; — on some of the supposed parent-species having had abnormal characters in comparison with all the other species of the genus, as with Hook-billed and Penguin ducks; — on all the breeds, as far as is known being fertile together (8/10. I have met with several statements on the fertility of the several breeds when crossed. Mr. Yarrell assured me that Call and common ducks are perfectly fertile together. I crossed Hook-billed and common ducks, and a Penguin and Labrador, and the crossed Ducks were quite fertile, though they were not bred inter se, so that the experiment was not fully tried. Some half-bred Penguins and Labradors were again crossed with Penguins, and subsequently bred by me inter se, and they were extremely fertile.); — on all the breeds having the same general disposition, instinct, etc. But one fact bearing on this question may be noticed: in the great duck family, one species alone, namely, the male of A. boschas, has its four middle tail-feathers curled upwardly; now in every one of the above-named domestic breeds these curled feathers exist, and on the supposition that they are descended from distinct species, we must assume that man formerly hit upon species all of which had this now unique character. Moreover, sub-varieties of each breed are coloured almost exactly like the wild duck, as I have seen with the largest and smallest breeds, namely Rouens and Call ducks, and, as Mr. Brent states (8/11. 'Poultry Chronicle' 1855 volume 3 page 512.), is the case with Hook-billed ducks. This gentleman, as he informs me, crossed a white Aylesbury drake and a black Labrador duck, and some of the ducklings as they grew up assumed the plumage of the wild duck.

With respect to Penguins, I have not seen many specimens, and none were coloured precisely like the wild duck; but Sir James Brooke sent me three skins from Lombok and Bali, in the Malayan archipelago; the two females were paler and more rufous than the wild duck, and the drake differed in having the whole under and upper surface (excepting the neck, tail-coverts, tail, and wings) silver-grey, finely pencilled with dark lines, closely like certain parts of the plumage of the wild mallard. But I found this drake to be identical in every feather with a variety of the common breed procured from a farm-yard in Kent, and I have occasionally elsewhere seen similar specimens. The occurrence of a duck bred under so peculiar a climate as that of the Malayan archipelago, where the wild species does not exist, with exactly the same plumage as may occasionally be seen in our farm-yards, is a fact worth notice. Nevertheless the climate of the Malayan archipelago apparently tends to cause the duck to vary much, for Zollinger (8/12. 'Journal of the Indian Archipelago' volume 5 page 334.), speaking of the Penguin breed, says that in Lombok "there is an unusual and very wonderful variety of ducks." One Penguin drake which I kept alive differed from those of which the skins were sent me from Lombok, in having its breast and back partially coloured with chestnut-brown, thus more closely resembling the Mallard.

From these several facts, more especially from the drakes of all the breeds having curled tail-feathers, and from certain sub-varieties in each breed occasionally resembling in general plumage the wild duck, we may conclude with confidence that all the breeds are descended from A. boschas.

[I will now notice some of the peculiarities characteristic of the several breeds. The eggs vary in colour; some common ducks laying pale-greenish and others quite white eggs. The eggs which are first laid during each season by the black Labrador duck, are tinted black, as if rubbed with ink. A good observer assured me that one year his ducks of this breed laid almost perfectly white eggs. Another curious case shows what singular variations sometimes occur and are inherited; Mr. Hansell (8/13. 'The Zoologist' volumes 7, 8 1849-1850 page 2353.) relates that he had a common duck which always laid eggs with the yolk of a dark-brown colour like melted glue; and the young ducks, hatched from these eggs, laid the same kind of eggs, so that the breed had to be destroyed.

(FIGURE 39. SKULLS, viewed laterally, reduced to two-thirds of the natural size. A. Wild Duck. B. Hook-billed Duck.)

The Hook-billed duck is highly remarkable (see figure 39, of skull); and its peculiar beak has been inherited at least since the year 1676. This structure is evidently analogous with that described in the Bagadotten carrier pigeon. Mr. Brent (8/14. 'Poultry Chronicle' 1855 volume 3 page 512.) says that, when Hook-billed ducks are crossed with common ducks, "many young ones are produced with the upper mandible shorter than the lower, which not unfrequently causes the death of the bird." With ducks a tuft of feathers on the head is by no means a rare occurrence; namely, in the True-tufted breed, the Hook-billed, the common farm-yard kind, and in a duck having no other peculiarity which was sent to me from the Malayan archipelago. The tuft is only so far interesting as it affects the skull, which is thus rendered slightly more globular, and is perforated by numerous apertures. Call ducks are remarkable from their extraordinary loquacity: the drake only hisses like common drakes; nevertheless, when paired with the common duck, he transmits to his female offspring a strong quacking tendency. This loquacity seems at first a surprising character to have been acquired under domestication. But the voice varies in the different breeds; Mr. Brent (8/15. 'Poultry Chronicle' volume 3 1855 page 312. With respect to Rouens see ditto volume 1 1854 page 167.) says that Hook-billed ducks are very loquacious, and that Rouens utter a "dull, loud, and monotonous cry, easily distinguishable by an experienced ear." As the loquacity of the Call duck is highly serviceable, these birds being used in decoys, this quality may have been increased by selection. For instance, Colonel Hawker says, if young wild ducks cannot be got for a decoy, "by way of make-shift, SELECT tame birds which are the most clamorous, even if their colour should not be like that of wild ones." (8/16. Col. Hawker 'Instructions to young Sportsmen' quoted by Mr. Dixon in his 'Ornamental Poultry' page 125.) It has been erroneously asserted that Call ducks hatch their eggs in less time than common ducks. (8/17. 'Cottage Gardener' April 9, 1861.)

The Penguin duck is the most remarkable of all the breeds; the thin neck and body are carried erect; the wings are small; the tail is upturned; and the thigh-bones and metatarsi are considerably lengthened in proportion with the same bones in the wild duck. In five specimens examined by me there were only eighteen tail-feathers instead of twenty as in the wild duck; but I have also found only eighteen and nineteen tail-feathers in two Labrador ducks. On the middle toe, in three specimens, there were twenty- seven or twenty-eight scutellae, whereas in two wild ducks there were thirty-one and thirty-two. The Penguin when crossed transmits with much power its peculiar form of body and gait to its offspring; this was manifest with some hybrids raised in the Zoological Gardens between one of these birds and the Egyptian goose (Anser aegyptiacus) (8/18. These hybrids have been described by M. Selys-Longchamps in the 'Bulletins (tome 12 № 10) Acad. Roy. de Bruxelles.'), and likewise with some mongrels which I raised between the Penguin and Labrador duck. I am not much surprised that some writers should maintain that this breed must be descended from an unknown and distinct species; but from the reasons already assigned, it seems to me far more probable that it is the descendant, much modified by domestication under an unnatural climate, of Anas boschas.

OSTEOLOGICAL CHARACTERS.

The skulls of the several breeds differ from each other and from the skull of the wild duck in very little except in the proportional length and curvature of the premaxillaries. These latter bones in the Call duck are short, and a line drawn from their extremities to the summit of the skull is nearly straight, instead of being concave as in the common duck; so that the skull resembles that of a small goose. In the Hook-billed duck (figure 39), these same bones as well as the lower jaw curve downwards in a most remarkable manner, as represented. In the Labrador duck the premaxillaries are rather broader than in the wild duck; and in two skulls of this breed the vertical ridges on each side of the supra-occipital bone are very prominent. In the Penguin the premaxillaries are relatively shorter than in the wild duck; and the inferior points of the paramastoids more prominent. In a Dutch tufted duck, the skull under the enormous tuft was slightly more globular and was perforated by two large apertures; in this skull the lachrymal bones were produced much further backwards, so as to have a different shape and nearly to touch the post. lat. processes of the frontal bones, thus almost completing the bony orbit of the eye. As the quadrate and pterygoid bones are of such complex shape and stand in relation with so many other bones, I carefully compared them in all the principal breeds; but excepting in size they presented no difference.

(FIGURE 40. — CERVICAL VERTEBRA, of natural size. A. Eighth cervical vertebra of Wild Duck viewed on haemal surface. B. Eighth cervical vertebra of Call Duck, viewed as above. C. Twelfth cervical vertebra of Wild Duck viewed laterally. D. Twelfth cervical vertebra of Aylesbury Duck, viewed laterally.)

VERTEBRAE AND RIBS.

In one skeleton of the Labrador duck there were the usual fifteen cervical vertebrae and the usual nine dorsal vertebrae bearing ribs; in the other skeleton there were fifteen cervical and ten dorsal vertebrae with ribs; nor, as far as could be judged, was this owing merely to a rib having been developed on the first lumbar vertebra; for in both skeletons the lumbar vertebrae agreed perfectly in number, shape, and size with those of the wild duck. In two skeletons of the Call duck there were fifteen cervical and nine dorsal vertebrae; in a third skeleton small ribs were attached to the so-called fifteenth cervical vertebra, making ten pairs of ribs; but these ten ribs do not correspond, or arise from the same vertebra, with the ten in the above-mentioned Labrador duck. In the Call duck, which had small ribs attached to the fifteenth cervical vertebra, the haemal spines of the thirteenth and fourteenth (cervical) and of the seventeenth (dorsal) vertebrae corresponded with the spines on the fourteenth, fifteenth, and eighteenth vertebrae of the wild duck: so that each of these vertebrae had acquired a structure proper to one posterior to it in position. In the eighth cervical vertebra of this same Call duck (figure 40, B), the two branches of the haemal spine stand much closer together than in the wild duck (A), and the descending haemal processes are much shortened. In the Penguin duck the neck from its thinness and erectness falsely appears (as ascertained by measurement) to be much elongated, but the cervical and dorsal vertebrae present no difference; the posterior dorsal vertebrae, however, are more completely anchylosed to the pelvis than in the wild duck. The Aylesbury duck has fifteen cervical and ten dorsal vertebrae furnished with ribs, but the same number of lumbar, sacral, and caudal vertebrae, as far as could be traced, as in the wild duck. The cervical vertebrae in this same duck (figure 40, D) were much broader and thicker relatively to their length than in the wild (C); so much so, that I have thought it worth while to give a sketch of the twelfth cervical vertebra in these two birds. From the foregoing statements we see that the fifteenth cervical vertebra occasionally becomes modified into a dorsal vertebra, and when this occurs all the adjoining vertebrae are modified. We also see that an additional dorsal vertebra bearing a rib is occasionally developed, the number of the cervical and lumbar vertebrae apparently remaining the same as usual.

I examined the bony enlargement of the trachea in the males of the Penguin, Call, Hook-billed, Labrador, and Aylesbury breeds; and in all it was identical in shape.

The PELVIS is remarkably uniform; but in the skeleton of the Hook-billed duck the anterior part is much bowed inwards; in the Aylesbury and some other breeds the ischiadic foramen is less elongated. In the sternum, furculum, coracoids, and scapulae, the differences are so slight and so variable as not to be worth notice, except that in two skeletons of the Penguin duck the terminal portion of the scapula was much attenuated.

In the bones of the leg and wing no modification in shape could be observed. But in the Penguin and Hook-billed ducks, the terminal phalanges of the wing are a little shortened. In the former, the femur, and metatarsus (but not the tibia) are considerably lengthened, relatively to the same bones in the wild duck, and to the wing-bones in both birds. This elongation of the leg-bones could be seen whilst the bird was alive, and is no doubt connected with its peculiar upright manner of walking. In a large Aylesbury duck, on the other hand, the tibia was the only bone of the leg which relatively to the other bones was slightly lengthened.

ON THE EFFECTS OF THE INCREASED AND DECREASED USE OF THE LIMBS.

In all the breeds the bones of the wing (measured separately after having been cleaned) relatively to those of the leg have become slightly shortened, in comparison with the same bones in the wild duck, as may be seen in Table 8.I.

TABLE 8.I.a.

COLUMN 1. Length of Femur, Tibia, and Metatarsus together (inches).

COLUMN 2. Length of Humerus, Radius, and Metacarpus together (inches).

COLUMN 3. Or as (ratio).

Name of Breed. 1. 2. 3.

Wild mallard. 7.14 9.28 100:129

Aylesbury. 8.64 10.43 100:120

Tufted (Dutch). 8.25 9.83 100:119

Penguin. 7.12 8.78 100:123

Call. 6.20 7.77 100:125

TABLE 8.I.b.

COLUMN 1. Length of Femur, Tibia, and Metatarsus together (inches).

COLUMN 2. Length of all the bones of the wing (inches).

COLUMN 3. Or as (ratio).

Name of Breed. 1. 2. 3.

Wild duck (another specimen). 6.85 10.07 100:147

Common domestic duck. 8.15 11.26 100:138

In table 8.I we see, by comparison with the wild duck, that the reduction in the length of the bones of the wing, relatively to those of the legs, though slight, is universal. The reduction is least in the Call duck, which has the power and the habit of frequently flying.

In weight there is a greater relative difference between the bones of the leg and wing, as may be seen in Table 8.II:

TABLE 8.II.a.

COLUMN 1. Weight of Femur, Tibia, and Metatarsus (grains).

COLUMN 2. Weight of Humerus, Radius, and Metacarpus (grains).

COLUMN 3. Or as (ratio).

Name of Breed. 1. 2. 3.

Wild mallard. 54 97 100:179

Aylesbury. 164 204 100:124

Hooked-bill. 107 160 100:149

Tufted (Dutch). 111 148 100:133

Penguin. 75 90.5 100:120

Labrador. 141 165 100:117

Call. 57 93 100:163

TABLE 8.II.b.

COLUMN 1. Weight of all the Bones of the Leg and Foot (grains).

COLUMN 2. Weight of all the Bones of the Wing (grains).

COLUMN 3. Or as (ratio).

Name of Breed. 1. 2. 3.

Wild (another specimen). 66 115 100:173

Common domestic duck. 127 158 100:124

In these domesticated birds, the considerably lessened weight of the bones of the wing (i.e. on an average, twenty-five per cent of their proper proportional weight), as well as their slightly lessened length, relatively to the leg-bones, might follow, not from any actual decrease in the wing- bones, but from the increased weight and length of the bones of the legs.

TABLE 8.III.a.

COLUMN 1. Weight of entire Skeleton (grains). (N.B. One Metatarsus and Foot was removed from each skeleton, as it had been accidentally lost in two cases.)

COLUMN 2. Weight of Femur, Tibia, and Metatarsus (grains).

COLUMN 3. Or as (ratio).

Name of Breed. 1. 2. 3.

Wild mallard. 839 54 1000:64

Aylesbury. 1925 164 1000:85

Tufted (Dutch). 1404 111 1000:79

Penguin. 871 75 1000:86

Call (from Mr. Fox). 717 57 1000:79

TABLE 8.III.b.

COLUMN 1. Weight of entire Skeleton (grains). (N.B. One Metatarsus and Foot was removed from each skeleton, as it had been accidentally lost in two cases.)

COLUMN 2. Weight of Humerus, Radius and Metacarpus (grains).

COLUMN 3. Or as (ratio).

Name of Breed. 1. 2. 3.

Wild mallard. 839 97 1000:115

Aylesbury. 1925 204 1000:105

Tufted (Dutch). 1404 148 1000:105

Penguin. 871 90 1000:103

Call (from Mr. Baker). 914 100 1000:109

Call (from Mr. Fox). 717 92 1000:129

Table 8.III.a shows that the leg-bones relatively to the weight of the entire skeleton have really increased in weight; but Table 8.III.b shows that according to the same standard the wing-bones have also really decreased in weight; so that the relative disproportion shown in the foregoing tables between the wing and leg-bones, in comparison with those of the wild duck, is partly due to the increase in weight and length of the leg-bones, and partly to the decrease in weight and length of the wing- bones.

With respect to Tables 8.III.a and b, I may first state that I tested them by taking another skeleton of a wild duck and of a common domestic duck, and by comparing the weight of ALL the bones of the leg with ALL those of the wings, and the result was the same. In the first of these tables we see that the leg-bones in each case have increased in actual weight. It might have been expected that, with the increased or decreased weight of the entire skeleton, the leg-bones would have become proportionally heavier or lighter; but their greater weight in all the breeds relatively to the other bones can be accounted for only by these domestic birds having used their legs in walking and standing much more than the wild, for they never fly, and the more artificial breeds rarely swim. In the second table we see, with the exception of one case, a plain reduction in the weight of the bones of the wing, and this no doubt has resulted from their lessened use. The one exceptional case, namely, in one of the Call ducks, is in truth no exception, for this bird was constantly in the habit of flying about; and I have seen it day after day rise from my grounds, and fly for a long time in circles of more than a mile in diameter. In this Call duck there is not only no decrease, but an actual increase in the weight of the wing-bones relatively to those of the wild-duck; and this probably is consequent on the remarkable lightness and thinness of all the bones of the skeleton.

Lastly, I weighed the furculum, coracoids, and scapula of a wild duck and of a common domestic duck, and I found that their weight, relatively to that of the whole skeleton, was as one hundred in the former to eighty-nine in the latter; this shows that these bones in the domestic duck have been reduced eleven per cent of their due proportional weight. The prominence of the crest of the sternum, relatively to its length, is also much reduced in all the domestic breeds. These changes have evidently been caused by the lessened use of the wings.]

It is well known that several birds, belonging to different Orders, and inhabiting oceanic islands, have their wings greatly reduced in size and are incapable of flight. I suggested in my 'Origin of Species' that, as these birds are not persecuted by any enemies, the reduction of their wings had probably been caused by gradual disuse. Hence, during the earlier stages of the process of reduction, such birds would probably have resembled our domesticated ducks in the state of their organs of flight. This is the case with the water-hen (Gallinula nesiotis) of Tristan d'Acunha, which "can flutter a little, but obviously uses its legs, and not its wings, as a mode of escape." Now Mr. Sclater (8/19. 'Proc. Zoolog. Soc.' 1861 page 261.) finds in this bird that the wings, sternum, and coracoids are all reduced in length, and the crest of the sternum in depth, in comparison with the same bones in the European water-hen (G. chloropus). On the other hand, the thigh-bones and pelvis are increased in length, the former by four lines, relatively to the same bones in the common water-hen. Hence in the skeleton of this natural species nearly the same changes have occurred, only carried a little further, as with our domestic ducks, and in this latter case I presume no one will dispute that they have resulted from the lessened use of the wings and the increased use of the legs.

THE GOOSE.

This bird deserves some notice, as hardly any other anciently domesticated bird or quadruped has varied so little. That geese were anciently domesticated we know from certain verses in Homer; and from these birds having been kept (388 B.C.) in the Capitol at Rome as sacred to Juno, which sacredness implies great antiquity. (8/20. 'Ceylon' by Sir J.E. Tennent 1859 volume 1 page 485; also J. Crawfurd on the 'Relation of Domest. Animals to Civilisation' read before Brit. Assoc. 1860. See also 'Ornamental Poultry' by Rev. E.S. Dixon 1848 page 132. The goose figured on the Egyptian monuments seems to have been the Red goose of Egypt.) That the goose has varied in some degree, we may infer from naturalists not being unanimous with respect to its wild parent-form; though the difficulty is chiefly due to the existence of three or four closely allied wild European species. (8/21. Macgillivray's 'British Birds' volume 4 page 593.) A large majority of capable judges are convinced that our geese are descended from the wild Grey-leg goose (Anser ferus); the young of which can easily be tamed. (8/22. Mr. A. Strickland, 'Annals and Mag. of Nat. Hist.' 3rd series volume 3 1859 page 122, reared some young wild geese, and found them in habits and in all characters identical with the domestic goose.) This species, when crossed with the domestic goose, produced in the Zoological Gardens, as I was assured in 1849, perfectly fertile offspring. (8/23. See also Hunter 'Essays' edited by Owen volume 2 page 322.) Yarrell (8/24. Yarrell's 'British Birds' volume 3 page 142.) has observed that the lower part of the trachea of the domestic goose is sometimes flattened, and that a ring of white feathers sometimes surrounds the base of the beak. These characters seem at first sight good indications of a cross at some former period with the white-fronted goose (A. albifrons); but the white ring is variable in this latter species, and we must not overlook the law of analogous variation; that is, of one species assuming some of the characters of allied species.

As the goose has proved so little flexible in its organisation under long- continued domestication, the amount of variation which it has undergone may be worth giving. It has increased in size and in productiveness (8/25. L. Lloyd 'Scandinavian Adventures' 1854 volume 2 page 413, says that the wild goose lays from five to eight eggs, which is a much fewer number than that laid by our domestic goose.); and varies from white to a dusky colour. Several observers (8/26. The Rev. L. Jenyns (Blomefield) seems first to have made this observation in his 'British Animals.' See also Yarrell, and Dixon in his 'Ornamental Poultry' (page 139), and 'Gardener's Chronicle' 1857 page 45.) have stated that the gander is more frequently white than the goose, and that when old it almost invariably becomes white; but this is not the case with the parent-form, the A. ferus. Here, again, the law of analogous variation may have come into play, as the almost snow-white male of the Rock goose (Bernicla antarctica) standing on the sea-shore by his dusky partner is a sight well known to those who have traversed the sounds of Tierra del Fuego and the Falkland Islands. Some geese have top-knots; and the skull beneath, as before stated, is perforated. A sub-breed has lately been formed with the feathers reversed at the back of the head and neck. (8/27. Mr. Bartlet exhibited the head and neck of a bird thus characterised before the Zoological Soc. February 1860.) The beak varies a little in size, and is of a yellower tint than in the wild species; but its colour and that of the legs are both slightly variable. (8/28. W. Thompson 'Natural Hist. of Ireland' 1851 volume 3 page 31. The Rev. E.S. Dixon gave me some information on the varying colour of the beak and legs.) This latter fact deserves attention, because the colour of the legs and beak is highly serviceable in discriminating the several closely allied wild forms. (8/29. Mr. A. Strickland in 'Annals and Mag. of Nat. Hist.' 3rd series volume 3 1859 page 122.) At our Shows two breeds are exhibited; viz., the Embden and Toulouse; but they differ in nothing except colour. (8/30. 'Poultry Chronicle' volume 1 1854 page 498; volume 3 page 210.) Recently a smaller and singular variety has been imported from Sebastopol (8/31. 'The Cottage Gardener' September 4, 1860 page 348.), with the scapular feathers (as I hear from Mr. Tegetmeier, who sent me specimens) greatly elongated, curled, and even spirally twisted. The margins of these feathers are rendered plumose by the divergence of the barbs and barbules, so that they resemble in some degree those on the back of the black Australian swan. These feathers are likewise remarkable from the central shaft, which is excessively thin and transparent, being split into fine filaments, which, after running for a space free, sometimes coalesce again. It is a curious fact that these filaments are regularly clothed on each side with fine down or barbules, precisely like those on the proper barbs of the feather. This structure of the feathers is transmitted to half-bred birds. In Gallus sonneratii the barbs and barbules blend together, and form thin horny plates of the same nature with the shaft: in this variety of the goose, the shaft divides into filaments which acquire barbules, and thus resemble true barbs.

На страницу:
28 из 47