
Полная версия
Invention: The Master-key to Progress
In the same year, Welsbach brought out an improvement on his incandescent gas-mantle that was valuable for cases in which a brilliant illumination was desired, that leaped almost immediately into public favor. In the following year of 1888, Sprague made the first installation of street electric railways in the United States, and the first in the world in which the conditions of operating were difficult. The success of Sprague's system was largely due to the excellence of Sprague's electric motor, which had the curious property of being designed on principles which the scientific men of those days declared to be wholly wrong. Sprague's reputation rests mainly on his electric railway; but, from the standpoint of the inventor, Sprague's invention of his electric motor was of a higher order than that of his electric railway.
In 1888, Harvey invented his process of making armor-plate. In the same year, Eastman and Walker invented the kodak camera, in which the novelty consisted mainly of a continuous roll of sensitized film, on which photographs could be successively made; and De Chardonnet invented his process of manufacturing artificial silk from threads that were made by forcing collodion through very small holes. These were important in fact; but in comparison with the discoveries in the realm of the actual ether made in the same year by Hertz, they were quite trifling.
These discoveries resulted from experiments with electric apparatus of the simplest and most inexpensive character, in a space near which sparks were passing between the two terminals of a Rhumkorff coil. It had been known before that each spark accompanied and therefore represented an establishment of equilibrium between the two oppositely charged terminals, and that each discharge was of an oscillatory character – as any readjustment of equilibrium always is. By means of a mere single wire, curved into a circle, except that the two ends were not quite joined, Hertz discovered that the space was filled with electric waves that were propagated in straight lines from the source (as light is) and accompanied with vibrations at right angles to the direction of propagation (also as light is); and also that the electric rays were refracted, reflected and polarized, as light rays are. Subsequent experiments with modified apparatus measured the velocity of the propagation of electric waves, and found that it was virtually the same as that of light.
To some, this may not seem a very important discovery, "from a practical standpoint"; and doubtless it is not, from the "practical standpoint" of some people, because it does not affect the amount of their worldly possessions, or their ease, comfort and pleasure. It was hailed with delight by scientific men, however; because not only did it support the electro-magnetic theory of light, but the course of Hertz's work had demonstrated the suspected fact that the "receiver" of electric waves must harmonize in its electric dimensions with the transmitter, in order that the greatest amount of electric energy may be developed in the receiver; and it had thus given assistance to investigations then in progress on what we now call "wireless telegraphy."
Many investigators were now in the field, among whom was the humble author of these pages. Little real progress was made until, in 1891, when Branly announced his amazing discovery and utilized it in his amazing invention, called the "coherer." His discovery was that, if a tube containing metal filings be placed in the "field" of the spark of an electric machine, Leyden jar, or Rhumkorff coil, it (the filings) will become a conductor of electricity when hit by the electric waves; and that it will revert to its normal state as a non-conductor, if smartly tapped: the effect of the waves being to cause the separate particles to co-here and form a continuous metal conductor; while the effect of the tapping was to jar the particles apart. The first use of this coherer was in place of the ring that Hertz had used; but its value as an instrument of practical usefulness in achieving electric communication without wires was almost immediately perceived – and demonstrated.
The career of the wireless telegraph since Branly's great discovery has been as rapid, widespread and important as any other new agency has ever enjoyed, and possibly more so. That wireless telegraphy was a distinct invention may perhaps be questioned. If it was, who was the inventor? It is true that an invention does not have to be associated with any one inventor in order to have the right to be characterized as an invention; but in the case of the wireless telegraph, it seems safe to say that, although some of the separate steps toward its achievement were inventions, the final step was merely the adding together of these separate steps in a way that was perfectly obvious, and that several men accomplished almost simultaneously. As soon as Branly produced his coherer, the problem was thereby automatically solved. Every experimenter realized that it was merely necessary to use Branly's coherer, in place of any receiver previously used, and to "tune" the transmitting and receiving circuits into harmony.
The first man to make a practical wireless installation seems to have been Marconi, in 1896. As is well known, the distances over which messages can be sent has been increasing rapidly ever since, and so has been the number and the importance of the organizations using it, of which the largest are the various national governments themselves. The vast influence of wireless (or radio) telegraphy on the history of the great World War is too recent to need detailing, but possibly it may be well to call to mind the fact that the ocean cables were virtually all under the control of the Allies, and that "the wireless" was almost the only means that Germany had for receiving information quickly and sending instructions quickly beyond her own coast line. It was used by the Allies, however, almost continually in the controlling of their multitudinous naval units on the sea, and among those units themselves; and it made possible that prompt and harmonious action among numerous widely separated groups, that distinguished this war from all preceding wars. It would be difficult to determine whether the wireless lengthened the war by the assistance it gave to Germany, or shortened it by the assistance it rendered the Allies. In the early part of the war, when Germany was directing ships that were far away, it helped Germany more than it helped the Allies; but in the last years, when the Allies were fighting the submarines in the Mediterranean and North Seas, it helped the Allies more. In the main, it probably shortened the war considerably, by accelerating the operations.
This reminds us of the fact that the general effect of invention has been to make wars more terrible but more brief; and that the abbreviating effect is especially noticeable in inventions that increase the speed and safety of transportation and communication. Another effect of invention has been to make wars more widespread; for the reason that it links some nations together and creates antagonism between other nations, even if they are far apart. Larger and larger organizations are thus brought into being, not only as nations but as allies and confederates. In this way, Japan fought in Asia, in co-operation with her allies in France.
On the supposition that the Machine is going to continue to increase in size and strength and excellence, on the further supposition that the more highly civilized nations will continue to control the less civilized nations increasingly, the time may not be many generations distant when all the nations of the world will be divided into a very few groups, each dominated by one great nation; as the Middle Europe nations were dominated by Germany in the last war. As all the known world was once divided into two groups headed by Assyria and Babylon; at another time by Assyria and Persia; at another time by Greece and Persia; at another by Rome and Carthage, etc., and as at various times Europe also has been divided into two opposing groups of nations, so the whole known world may again be divided into two opposing groups of nations: – possibly the white and the yellow nations.
The clash of the fighting machines of two such vast organizations, perfected in power and speed as they doubtless will be as the years go by and inventions succeed each other, will surpass in grandeur anything yet dreamed of. It may never occur. Never? It may never occur; but something approximating it will occur, if history is to be as much like past history as history usually has been.
In 1889, Schneider invented his process of making nickel steel, and thereby effected an improvement in steel that was first utilized in making armor, and afterward in making other articles of many kinds. Hall invented a process of making aluminum during the same year. In the following year, Stephens invented his electric plough, and Mergenthaler made an improvement on his linotype machine. About the same time, pneumatic tires were attached to bicycles; and an invention of a most important kind, that had lain dormant for many years, was put to work at last. The inventor had long since died. Does he know that his invention is now used all over the civilized world? If so, does the knowledge give him pleasure?
One of the most unsatisfactory parts of an inventor's experience is the difficulty he has in making other men see the value of his inventions, combined with the fact that when the invention is finally adopted, his part in it is often forgotten, and sometimes intentionally ignored. This applies especially to inventions of a high order of originality, that are a little in advance of the requirements and knowledge of most men at the time, and that are looked upon as visionary and do not come into use for a considerable while. Many an inventor has endured a purgatory while trying to get a hearing for his invention, and yet been wholly forgotten when it was finally adopted. To make the matter worse, he has often been branded for life as a visionary, and remained so branded, even after the invention had been adopted because of which he had been branded. In other cases, manufacturers have stolen his invention and denied his claims, knowing that he was too poor to fight against them with all of their resources. In other cases, business men and lawyers have combined to induce him to sign papers of a highly advantageous character to the business men, but contrariwise to the inventor. In all of these cases, the matter has usually been the worse for the inventor in proportion to the high order of the invention: for the real inventor, like the real artist, is usually so absorbed in his thoughts that he cares but little (too little) for material gain. The case of the inventor who makes a business of inventing is somewhat different. He usually confines his efforts to making inventions that will bring in money, becomes an expert on nice points in patent law, discerns chances for circumventing existing patents while utilizing their basic principles, perceives opportunities for making the little improvements in detail that promote practicability, and becomes the kind of inventor who owns a limousine.
In 1890, Krag-Jorgensen invented the famous rifle of that name. In the following year, Branly invented the coherer mentioned on page 305, and Parsons invented his rotary steam turbine. The steam turbine was an improvement over the reciprocating steam engine for many classes of work, great and small. The first steam engine invented by Hero was a rotary engine, but it was of course, most uneconomical of steam. The first steam engine that was really efficient was the reciprocating engine produced by Watt. The greatest single defect of rotary engines has always been the loss of steam in going by the rotating parts without doing any work, a defect existing in only a small degree with the closely fitting pistons of reciprocating engines. In the turbines invented by Parsons and others about the same time, wastage of steam was prevented by various means that need not be detailed here, and smooth motion of the rotary engine at the same time secured. The greatest benefit accrued probably to ocean steamships, in which the absence of vibration, and the saving in weight, space and number of attendants required were features of great practical importance.
About 1890, Edison invented the kinetograph and kinetoscope, after a long series of investigations and experiments. These followed the experiments made by Dr. Muybridge some years before, in which he had taken many successive pictures of horses at very short intervals, by means of as many separate cameras, (twelve pictures in one stride for instance), and afterwards reproduced them in such a way as to show horses in rapid motion. They came also after Eastman's kodak, in which pictures could be taken successively, on a traveling film. In the kinetograph, only one object glass was used; and the film was drawn along behind it in such a way that, at predetermined intervals, the film was stopped and a shutter behind the object glass or lens was moved away, and a picture taken. The moving mechanism (at first the human hand) continuing in motion, the shutter was closed and the film was moved along a short distance, so as to bring another part behind the object glass. Then the same operation was repeated – and so on. In the kinetoscope, the operation was reversed, in the sense that the pictures taken were presented successively to the eye of the observer. In the first form, the observer looked at them through a peep-hole: but in the latter forms, the pictures have been thrown upon a screen – somewhat as from a magic lantern, and become the "movie" of today.
Here, again, we see an invention of the highest order in each of the three essentials – conception, development and production. No invention exists of a higher order. As to their use and usefulness, we are most familiar with them in moving pictures. Whether it is for the public good to produce so many shows for idly disposed men and women to spend their time in looking at, is perhaps a possible subject for enlightening discussion. But the moving picture is used for many purposes, especially for purposes of education and research, besides that of mere amusement, and will unquestionably be so used, more and more as time goes on. One of its most obvious spheres of usefulness is in making photographs of movements that are very rapid, and then analyzing and inspecting those photographs when presented very slowly, and when stopped. Another is in taking photographs of successive situations that have occurred at considerable intervals of time, and then presenting the pictures quickly, and thus showing a connected story. By dealing in this way with historical incidents, we can get a realization of the interdependence of those incidents that we cannot get in any other way, and see how cause has produced effects, and effects have come from causes. Similarly, the work of building any large structure can be shown by presenting rapidly a series of photographs taken at different stages; and so can the growth of a plant or animal, and almost any kind of progress.
Let us impress on our minds the fact that if we read any book, or witness any occurrence, or listen to any argument, or receive any instruction of any kind, the only value comes to us from the pictures made on our mental retinas and the permanence and clearness of the records impressed. Thus, any means that can impress us quickly with the most important pictures must be of the highest practical value, both in prosecuting studies of events, and in gathering conclusions from them. In fact, the kinetograph and the kinetoscope are simply Edison's imitation of the operations carried on inside the skull of each of us; for we are continually taking moving pictures of what we see and hear and read and feel; recording them on our own moving sensitized films, and bringing them before our mental gaze at our own volition and sometimes in spite of it.
In 1890, the author of this book patented "A Method of Pointing Guns at Sea" that has been adopted in all the great navies, under the name "Gun Director System." In 1891 he patented a modification under the name "Telescopic Sight for Ships Guns." These two inventions are used in every navy in the world, have increased the effectiveness of naval gunnery immeasurably, and have, therefore, been important contributions to the self-protectiveness of the Machine.
In 1893, Acheson invented his process for making carborundum, a compound of carbon and silicon, made in the electric furnace, and used for abrasive purposes; and in the same year Willson made carbide of calcium from carbon and quick-lime, also in the electric furnace. In 1895, Linde invented his process of liquefying air, and the first installation of great electric locomotives was effected: this was in the Baltimore and Ohio tunnel. In the same year, Röntgen made the epochal discovery of what he called by the significant name "X-rays," a name that still clings to them.
They were discovered by Röntgen in the course of his researches with cathode rays. His discovery was in effect that electric rays emanated from the part of the tube struck by the cathode rays. They were not cathode rays, though produced by them, and had the amazing property of penetrating certain insulating substances, such as ebonite, paper, etc., while not penetrating metals, except through short distances. Unlike the cathode rays, they were not deflected by magnets; and neither did they seem to be reflected or refracted similarly. Their most important property was that of acting photographically on sensitized plates, even when in closed slides, and wrapped carefully in black paper.
The greatest usefulness of the X-rays thus far made has been in photographing internal parts of the human body; for the rays pass through certain parts less readily than through other parts; through bones for instance, less readily than through soft parts. Fractures or displacements of bones can therefore be readily detected. So also can the formation of pus in cavities, and the appearance of abnormal products of many kinds. To this discovery we must give a rank as high as almost any other that we have noted in this book, though we cannot tell, of course, how long it will hold it. With mechanical and scientific inventions, as with books and poems and inventions of other kinds, the question of permanence of value or of usefulness cannot be decided until after many years.
One of the curious properties of X-rays is that of rendering the air through which they pass a conductor of electricity. So far as the author is aware, no invention of practical usefulness has yet been made, based upon this property.
In 1896, Marconi brought out the first practically successful system of wireless telegraphy, Finsen demonstrated the usefulness of certain rays of the spectrum for treating certain skin diseases, and Becquerel discovered what have since been called the Becquerel rays. In experimenting with X-ray photography, he found that a sensitized plate, though covered with black paper, was acted on not only by X-rays, but also by the metal uranium and certain of its salts; and he also found that the mere presence of uranium made the contiguous air a conductor, as did the X-or Röntgen rays. The amazement caused by the discovery of such undreamed-of properties, especially in so commonplace a substance as uranium had been supposed to be, can easily be imagined; and it is plain why strenuous efforts were made at once by scientific people, to see if other substances did not possess those properties also. As a result, it was soon found that other bodies did possess them. To those bodies that seem to possess the quality of radiating activities of certain kinds, the adjective radio-active has been applied. The most important radio-active elements are uranium, thorium and radium, of which the last is immeasurably the most active and important. Radium was discovered in 1898 by M. and Madame Curie and M. Bémont, while experimenting with the uranium mineral pitchblende. It seemed to some people at the time to challenge the theory of the conservation of energy, and to threaten the destruction of the whole science of Physics, by emanating energy without loss to itself. It has since been found, of course, that radium does give up part of its substance; that it disintegrates in fact, as a result of its emanations.
How great an influence the discovery of radium is going to exert, it is now impossible to predict with confidence; but it is manifest that the three successive and allied discoveries of cathode rays, X-rays and radium have introduced a new and growing science into the Machine; and it is seemingly possible that that science may, soon or tardily, ascertain the nature of the atom, and even teach us to divide it. It seems that an atom of radium does actually disintegrate, and by disintegrating give out energy. The energy it gives out is so enormous in proportion to the mass which gives it out, as to suggest to us an almost infinite source of available power, if other substances can be made to disintegrate. It is said that one gramme of radium can emit a quantity of heat of about 100 calories per hour; that is enough heat to raise 100 grammes of water a 1° centigrade in temperature, by simply existing. It is true that radium is the most expensive article in the world; but that is only because of the difficulties of obtaining it at present. Now if radium is so potentially powerful and disintegrates so easily, it seems possible that other substances less easily disintegrable could emit greater energy, if (or when) a means is discovered for disintegrating them.
The interesting question now suggests itself of what would happen if some man should some day discover accidentally a means of disintegrating – say carbon – and should unintentionally disintegrate a few tons of coal in Wall Street. We know what has happened at times when piles of explosives have been accidentally detonated. But explosives are merely chemical compounds, and, compared to atoms of radium are relatively microscopic in the energy developed when broken up. We remember the story of the commotion caused by the monk's experiment in making powder, when the mixture exploded and hurled the pestle out of the mortar and across the room. Imagine a few tons of carbon atoms exploding.
In 1894 a war, long presaged, broke out between China and Japan. In 1854, when Commodore Perry went to Japan, and gave a virtual ultimatum that resulted in Japan's opening her seaports to the commerce of the world, China and Japan were on the same plane of civilization, though China was many times greater in area and population. But the people of Japan were different from those of China in the essential mental characteristic of imagination, – at least their rulers were. For those rulers, noting the superior power of the foreign war-ships as compared with theirs, and reasoning from this to the conditions of the countries that produced those war-ships, and that produced also the implements of war on board that were so much superior to the Japanese, made a mental picture of what would happen to Japan some day, when those war-ships should come to Japan and demand submission. To make such a picture did not require much imagination, maybe; but the fact seems to be that no other Asiatic nation, and no African nation, made it. Then the Japanese made another picture, that required imagination of a brilliant kind; and that was a picture of Japan learning the arts of the foreign devil, and then utilizing those arts to keep the foreign devil himself at bay.
To us, looking back on the perfectly clear record of performance that Japan has made since then, that performance may seem not very difficult either to attempt or to achieve. But no other nation in the history of the world has ever paralleled it, or even approximated it. To appreciate it, one must exert all the imagination of which he is capable, and see himself in Japan as Japan was in 1854, amid all the influences of the history and environment then prevailing, with all their accompaniments of ignorance, prejudice, inertia and racial pride. It is the consensus of opinion throughout the world that the performance of Japan since 1854 has been amazing. It is part of the humble effort of this book to show that, in all great achievements, the result should be attributed mainly to the estimate originally formed of the situation, and the decision (invention) made to meet it. "C'est le premier pas qui coute": the rest follow as results.