
Полная версия
Invention: The Master-key to Progress
Illustrations of this can be seen the most clearly in our large cities, in which information concerning a fire, or a riot, or an accident is transmitted instantly to all parts of the city; and fire engines, police or ambulances are sent in response thereto. Illustrations covering wider fields come to mind at once; but they are of the same character, whether the fields comprise single states or continents or seas, or the whole surface of the earth. Possibly the best single illustration is that supplied by the events of the recent World War, in which the nerves of civilization in every land were kept on the tingle by the news continually received from the fighting fronts, and measures were continually taken to meet each situation as it occurred. Australia and New Zealand and America and Canada and South Africa assisted France to repel the invader from her soil.
The influence of the telephone on history has been so great that history would not be at all as it has been, if the telephone had not been born. Has this influence been beneficent? Probably, because it has tied the parts of the Machine together, and made it more coherent. But it may be well to realize that this very fact has had the effect of permitting other additions to the Machine; with the result that the Machine is perhaps no more coherent now than it was when the telephone was added to it. Furthermore, we must not forget that, although the influence of each new invention is usually to assist civilization rather than to assist its enemies, yet we cannot assume that 100 % is exerted on that side, for a considerable percentage is always exerted on the other side. For instance, the printing press is used to disseminate harmful teachings, as well as beneficent teachings, the telephone is used for bad purposes as well as good ones, etc.
We must not restrict our appreciation of the influence of the telephone by ignoring the stimulation which it has given to study and experiment, especially in the physical sciences. People of the present day do not realize the amazement and excitement caused throughout the world by the sudden realization of the fact that human speech could be transmitted. Coming as it did so soon after the invention of the Gramme dynamo, it waked the minds of men with a sudden start, and opened a dazzling avenue of anticipation of discoveries and inventions yet to come. Young men, and especially young men of fine ambition, saw ahead a clear line of useful and brilliant work; and the colleges and technical schools were soon thronged with eager youth. A new epoch – the electric epoch – was at hand.
The most generally noticed herald of the new epoch was not the telephone, however, but the "electric candle" invented by Jablochkoff in 1876, which soon afterward came into use in Paris. This candle consisted of two parallel sticks of carbon separated by an insulating substance, made of some refractory material, that fuzed as the carbons gradually burned away. The two carbons were connected to an electric circuit that passed from the tip of one carbon to the tip of the other, causing a brilliant electric arc. To prevent one carbon wasting away more rapidly than the other, an alternating current was employed. This great invention is now almost forgotten, because it was soon supplanted by the present arc-light that is better in many ways. Nevertheless, to Jablochkoff must be accorded the distinction of being the first to make electric lighting on a large scale practicable, and to demonstrate the fact.
In the same year, an invention of more than doubtful beneficence was made, a machine for continuously making cigarettes; but this was balanced in the same year by the inventions of the steam saw-mill and of Portland cement.
In the following year came an invention fully as brilliant as the telephone, though not so useful, the phonograph. It is usually considered as more brilliant; certainly it was more unexpected. The idea of transmitting speech was very old, many men had worked on it, and many were working on it at the time when Bell accomplished it; but the idea of recording speech was almost undreamed of. Up to the present moment, it can hardly be said that the phonograph has had great influence on history; for its main work has been in giving pleasure by the music it has rendered. We can easily imagine the present Machine, without the phonograph, but not without the telephone.
And we cannot imagine the present Machine to exist without the gas engine, invented the same year by Dr. Otto, that made possible the use of large units of mechanical power, without the need of boilers or condensers or other external appliances; for the combustion of the fuel was carried on inside the engine itself. This invention has been followed by many others during the forty-five years that have since gone by, in which oil has taken the place of gas. Petrol or gasolene has been the oil (or spirit) most used; but engines of the Deisel type, employing heavy oils, have now come into being in large numbers.
It is easy to underestimate the influence of the gas-engine, or oil-engine (usually called the internal combustion engine), as is proved by the fact that most people do so; despite the evidence of its importance on all sides, in the shape of submarine vessels, automobiles and similar vehicles. Its most important single effect has been to make possible the aeroplane, and all the science and art of aviation, and the consequent conquest of the air.
In the same year of 1877, Edison made his great invention, the carbon telephone transmitter, which increased enormously the effect of the voice in varying the resistance of a telephone circuit, and thereby increased the loudness of telephone speech. In the same year, Berliner invented the induction transmitter, which consisted of a primary coil of small resistance in circuit with the transmitter and the secondary coil connected to the outside circuit. These two inventions, added to Bell's original invention, made the telephone of today – in its essential features.
In 1878, Edison produced his incandescent lamp, in which a carbon filament, enclosed in a bulb exhausted of air, was heated to incandescence by an electric current. The importance of this invention need hardly be even mentioned. As to the originality of the conception, there are many opinions; for several experimenters had been working in this field, and many brilliant results had been achieved. Important as this invention was, we can imagine the Machine to exist without it, though not in quite so perfect and complete a form. Its main use is its obvious use; though there can be no doubt that the improvement it wrought in the conditions of comfortable living, and the attractions it offered to ambitious youths enlisted a large army in the study of the physical sciences, gave impetus to all the mechanic arts, and assisted in many important ways the upbuilding of the Machine.
In 1879, Appleby invented the automatic grain-binder, and Sir William Crookes made his epochal discovery of cathode rays. This discovery, like many others of a highly scientific character, was not of immediate practical value; consisting as it did in the fact that if the poles of the secondary circuit of a Rhumkorff coil were connected to the two ends of a glass tube from which nearly all the air (or other gas) had been exhausted, a stream of electrified particles was projected from the cathode, or negative pole. These particles were evidently projected with great violence; for if they struck the side of the tube, they produced a brilliant illumination there; while if they struck a piece of metal they developed heat. If the metal were sufficiently thin, it was melted. Later study of these cathode rays developed the fact that the stream of charged particles could be deflected by magnetic and electric fields, thus showing that they had actual physical mass; and still later studies resulted in that mass being determined, and also the amount of the electric charges on them. To an individual particle the name electron was given; and the interesting fact developed that the mass of an electron is only about one-thousandth that of an atom of hydrogen.
This is not very exciting news to men whose time is consumed in the engrossing occupation of earning a living; but scientific facts have a curious habit of lurking in the background, sometimes a long while, and then suddenly stepping up to the footlights in the form of facts or inventions of a kind that are exceedingly important, – even from the standpoint of making a living, or at least of enduring the conditions of living. The study of electrons, for instance led the way to the discovery of the beneficent X-rays, made in 1895 by Röntgen.
The first electric railways, like the first railways of any kind, were laid in mines; for the superiority of electricity over steam for use in the unventilated spaces of mines was obviously greater than in the open spaces on the surface. The first one was in the mines at Zankerode in Germany and was constructed by the famous Siemens Brothers. The first electric surface railway was built at Berlin in 1879. It was about three hundred and fifty yards in length, and laid upon wooden sleepers; an auxiliary rail being fixed midway between the two main rails. The auxiliary rail carried the electric current, which was taken off by a brush connected to the electric motor on the car, from which it went to the rails that acted as the "return." The similarity between this system and that now used in all our cities is striking, and shows how practically and scientifically good the first electric railway was.
To estimate correctly the influence of the invention of the electric railway would be, of course, impossible, especially on partially developed countries; for the electric railway assisted greatly in developing them. It seems possible, however, that the electric railway may be of not very long life, for the reason that the internal-combustion-engine possesses the same great advantage of smokelessness that the electric motor does and makes possible the use of a much simpler system than electric railways necessitate. The fact that any invention is displaced by a later one does not, of course, detract from the merit of the invention displaced, in having supplied the needed stepping-stone for the other one to rise from.
In the same year, Foy invented the steam plow, and Lee invented his magazine rifle. In the following year (1880) Blake invented his telephone transmitter, an improvement of a practical character over preceding ones, Greener invented his hammerless gun, and Faure invented his electric storage battery.
The Faure storage battery was a very important invention, but not nearly so important a one as was at first supposed. It was an improvement on Planté's battery, and consisted mainly in applying red lead and litharge directly to the positive and negative lead plates, before sending any charging current through the liquid; thus expediting the making of the battery very greatly. The invention was hailed with extravagant rejoicings, even Sir William Thomson being carried away from his habitual equanimity; but serious practical difficulties soon developed that are familiar to most of us, and that have never yet been overcome.
In 1880, Koch and Eberth isolated the typhoid bacillus, and Sternberg the pneumonia bacillus. The importance of these two discoveries is not usually appreciated by any but physicians and those who have suffered from these diseases and been cured. Even those who have been saved from having them, especially those in armies who have been saved from having typhoid fever, fail to realize their debt. But the almost perfect immunity from typhoid fever enjoyed by all the enormous armies of the vast World War, compared with the frightful distress and mortality caused by typhoid fever in previous wars, bears eloquent witness to the influence of the great discoveries of those tireless investigators.
It may be pointed out here that of all the inventions and discoveries ever made, those made in medical and surgical science, especially in preventive measures, have had more direct and immediate influence on history than contemporary inventions in any other field, save possibly religion. For what is history but the life-story of the human race; and what greater influence can be had than influence upon the health of its component members? The discoveries and inventions made in the field of bacteriology especially, by gaining knowledge concerning the unseen and unheard foes that attack us from within, have lifted civilized man up to a condition of cleanliness and purity, in comparison with which the conditions under which our forefathers lived seem almost repulsive.
It is true that many of these conditions were outcomes of civilization itself, and that for some of them medicine has merely found the antidotes. Yet the fact that medicine has found antidotes shows that medicine has been keeping pace with progress and has invented measures for preventing the Machine from poisoning itself by a sort of auto-intoxication. That the Machine is in danger of disruption by outside and inside forces has been suggested frequently in this book; so that what seems to be indicated as desirable is a series of discoveries and inventions that will prevent it. But, in attempting this, we must not forget that each new discovery or invention adds another part, that safety devices are sometimes so intricate as to increase the danger element rather than lessen or prevent it, and that safety appliances themselves are apt to get out of order, and thus lead to a false sense of security. These reflections force on our attention the fallibility of the human, the necessity for continuous study of all situations as they successively develop, and the solemn fact that progress is not beneficial of itself; for it may be in the wrong direction.
One obvious fact that we have always realized, startles each one of us occasionally; the fact that "people do not know what is good for them." The appetites and instincts of undomesticated brutes are said to be much more trustworthy as guides than those of domesticated brutes and human beings. We, by cultivating our imaginations and reasoning powers, and the brutes by being given food and shelter that they themselves do not have to get, seem to have lost a considerable part of the instinctive abilities with which we were originally blessed. With human beings, many objects that most of us aim for are extremely artificial, and some of them are extremely harmful. An illustration is the craving for much food and little physical labor, – a craving that is gratified almost at once by most people suddenly achieving wealth, with consequences that are always deplorable and are frequently distressing.
Of course this comes from excessive yielding to our appetites; but the brutes seem to feel no temptation to excessive yielding; an undomesticated brute seems to know when he has had enough. We not only yield, we go further and force our appetites. Possibly this is only an illustration of the fact that our minds have a sort of inertia, comparable to the inertia of physical objects; so that when we move in any direction, we are apt to go too far. That it is a tendency of human nature to go too far in any line of conduct, when once it is entered on, the facts of daily life continually testify. What reformer in public or private life ever knew when to stop; what money maker ever realized that he had enough money and ceased his efforts to get more? A small percentage have, but only a small percentage.
For this reason and others, the human machine and the Machine of Civilization do not get along together as harmoniously as might be wished. Though many inventions, especially the basic ones, have been actually uncontrollable acts of self-expression, many others have been inspired by motives largely selfish, such as the wish to gain fame, or power or money (or fame and power and money); and the result is a Machine that contributes more to man's material well-being than to his moral, mental or spiritual well-being, and a consequent civilization that is necessarily artificial. The net effect, however (unless all our standards are wrong), has been beneficial; for it cannot truthfully be denied that physically, mentally, morally and spiritually, the civilized man is better than the savage, and to a degree commensurate with the degree to which he is civilized.
Probably most civilized men would agree to this proposition. Probably most of them would also agree that civilization brings its evil influences as well as its good influences, that the Machine has been found vulnerable to destructive influences in the past, that the ultimate effect must be judged from its influences on human beings, and that the most beneficent inventions and discoveries have been those that tend to the safety of the Machine itself and the spiritual, moral, mental and physical health of the individual humans who comprise its principal parts. They will therefore applaud such discoveries as those of Eberth, Koch and Sternberg of 1880, and also another one of Koch and one of Pasteur two years later. Both of these benefactors then isolated deadly microbes of disease: Koch the bacillus of tuberculosis, and Pasteur that of hydrophobia.
In 1881, Reece invented a button-hole machine and Schmid a hand photographic camera. Both of these were useful inventions if not brilliant. It would be interesting to know the amounts of money realized by their inventors, compared with the amounts received by Koch, Pasteur and Sternberg. In 1884, by the way, Koch made another epoch-making and beneficent discovery, and isolated the bacillus of cholera. Loeffler did the same thing, in the same year for diphtheria, and Nicolaier for lockjaw; while Kuno produced antipyrene.
In reflecting on what these great men accomplished, it is interesting to point out to ourselves that the consensus of opinion seems to be that, for most people, "the pursuit of happiness" is the main business of life. Whether this ought to be or not, should not distract our attention from the fact that it really is. To most of us – at least to those of us who are young – happiness seems to lie in the thing pursued, provided the pursuit succeeds. We all seek the crock of gold at the end of the rainbow, and imagine that if we get it, we shall get the summum bonum of everything – happiness. Yet all one has to do is to remember how happy he was one day when he was feeling well physically, morally, mentally and spiritually (as we all have at rare intervals), to realize that happiness is merely a condition, – and that it is a condition that depends more on the condition of his own machine than on all other things put together. When one observes the action of a fine trotting horse, the smooth and noiseless motion of a large steam-engine, or the majestic setting of the sun; or when he hears the harmonies of some great musical composer, or the grander harmonies of the ocean-breakers on the beach; or when he ponders on the inconceivably swift but God-like regularity of the stars and planets, he may get a faint and brief conception of what it means for a machine to be in order. Our human machines are rarely in this condition: but sometimes, without any assignable cause whatever, one takes a deep, full breath, and says, "It is good to live."
The men just spoken of, and the great teachers of truth in all ages, in even a higher degree, admonish us to keep our machines in order, and tell us how to do it.
How not to do it, the world and the flesh and the devil tell us unceasingly; beguiling us, as the serpent beguiled Eve, to eat; to gratify one and all the appetites of the senses, regardless of the effect on the machine inside. For we know those senses ought to guard our intake valves, but do not.
Why cannot some one invent a device that will automatically regulate our intake valves? Such an invention would prevent us from eating too much, drinking too much, and smoking too much, and also from eating, drinking and smoking things detrimental to the machine, and injurious to our happiness; and even from taking in sights and sounds and thoughts of an unhealthful kind. This might be followed by another invention that would regulate our outgo valves, and put a brake on our speech, our ambition, our acquisitiveness, etc. But would not these take from us our God-granted free will? Yes, in great measure. But such is the effect of the Machine of Civilization. The primeval savage lived – (and the primeval savage still lives) in a condition of almost perfect liberty, as do the beasts that perish: but in the vast Machine of Civilization, we are only tiny parts. Each of us, it is true, has a little freedom of motion; but it is like the "lost motion" of a loose part in a crude or ill-constructed engine; and it seems to be growing smaller and smaller, as the Machine grows larger and improves.
CHAPTER XIII
THE CONQUEST OF THE ETHER – MOVING PICTURES – RISE OF JAPAN AND THE UNITED STATES
In 1884, Mergenthaler invented the linotype machine, in which matrixes for casting different type were moved successively into line, by pressing the corresponding alphabetically marked keys on a keyboard, and the whole line then moved to the casting mechanism and cast. This was an invention of the most clean-cut and perfect character; following clearly the processes of conception, development and production, and resulting in an improvement in the art of printing of a most important kind. Few inventions embody such a brilliant and original conception, such excellent constructiveness and such a useful product. So perfect was the result, and so clear was the conception that preceded it, that one marvels that some one had not invented it before. Why make matrixes for type, then cast the type, then space the type individually one after the other in line, and then stereotype them as they stand in line, when it is so much easier simply to place the matrixes in line and then stereotype the matrixes? The influence of this invention is of the same kind as the influence of the invention of the art of printing from movable type, because it is an improvement in that art. All over the world this invention, or inventions suggested by it, are used by the newspaper and book publishers, with the result that the quickness and accuracy of printing are much enhanced, and the work of co-operating the parts of the Machine thereby facilitated.
In the same year Marble increased the safety of the bicycle by his invention of the rear-driven chain, and Schultz invented his chrome process of tanning leather. Both of these were important in their way; but in 1885 Cowles made a more important invention, that of reducing (and thereby producing) the metal aluminum from its oxide, called alumina, the chief constituent of clay. The usefulness of aluminum lies largely in its extreme lightness, and in the fact that when combined with certain metals, notably copper, it forms important alloys.
During the same year, Welsbach invented his gas mantle, a valuable contribution to gas-lighting, and Bowers invented his hydraulic dredge, in which the act of dredging a channel or harbor was accomplished by hydraulic power. In the same year, Van Depoele invented a practical contact appliance for use in taking off the current from the overhead wires of electric railways. In 1886, Bell and Tainter invented the graphophone, an important improvement on the phonograph, and Elihu Thompson invented electric welding. This was an epochal invention, inaugurating as it did an entirely new art, and contributing enormously not only to the quickness of welding, but to its accuracy and strength. Many improvements have been made on this invention during the past few years, that have increased its scope and value. Many articles are now made in one piece that is really solid, though composed of several parts: for those parts are so firmly welded together that the joints cannot be seen and are as strong as any other parts.
In the same year, Matteson invented his combined harvester and thresher. In the following year, Prescott invented his band wood saw, and McArthur and Forrest invented their process of extracting metals (especially gold and silver) from ores by the use of a solution of potassium cyanide, and greatly cheapened the work. In the same year, Tesla invented his system of multi-phase electric currents, which rendered possible the economical transmission of power over long distances, of which the first use was made in transmitting power derived from Niagara Falls. This was another invention of the first order of merit in brilliancy and originality of conception, excellence of constructiveness and usefulness of result. Its value has been only dimly appreciated by most men, because the invention does not stand continually before our eyes, like the telephone and electric light; for it cannot be seen at all. It is not a machine or instrument (in the common use of those words) but a system, actually invisible of itself, that governs the method of design, construction and operation of the visible dynamos, motors and conductors. Like the germ of life, we see not it, but only its manifestations.