
Полная версия
Popular Books on Natural Science
Hence it is understood now, that the particles of water in the air form fog, or, which is the same, clouds, so soon as they come into a colder stratum. But the cloud is not rain as yet; the change into rain will depend upon circumstances that may be easily guessed. If a warmer and dryer stratum passes over the one containing the newly formed clouds, then this warmer stratum will absorb the water-particles of the other. The moist air fares like the wet clothes we spoke of; the warm dry air absorbs its particles of water. But if a colder stratum of air approaches the stratum containing clouds, then the water-particles of the latter are condensed; the cloud becomes small drops of water; these drops are too heavy to be supported in the air, and they fall down as rain.
During its descent, the drop of rain is steadily increased by the water-particles of the air through which it passes. Thus it happens, that rain often arrives at the earth in the form of large drops of water, while when yet in the air and beginning to fall, it consisted of tiny drops. It is well known that the rain-drops on the roof are smaller than those that fall on the street. The difference is so great, that on the roof of the royal castle in Berlin, Prussia, there falls four and a half inches less rain during the year than on the square before the building.
Our readers may now imagine, without difficulty, how in a similar way, snow is formed. If a stratum of air saturated with moisture meets a very cold one, the fog begins to freeze, and becomes specks of snow. They, too, increase while falling, and on arriving upon the earth they are large flakes.
On the occasion of a lecture about the formation of snow in the atmosphere, Professor Dove once told an anecdote, which is as interesting as it is instructive. A musician in St. Petersburg gave a concert in a large hall, where the fashionable world had assembled in great numbers. It was an icy cold night, such as is almost unknown with us; but in the overcrowded hall there was such excessive heat as only Russians can endure. Soon, however, it became too intense even for them. The hall was densely crowded; the throng was alarming; several ladies fainted. An effort was made to open a window, but without success – the window was frozen fast. A gallant officer devised means; he broke the window in. And what happened? It commenced to snow in the concert room! How did this come? The vapor exhaled by the multitude of persons in the hall had collected above, where the air was hottest. The sudden entrance of the icy air through the broken window changed the particles of water into snow. Thus it was this time not heaven, but the upper space of an unventilated concert-hall, that sent down snow.
In a similar way hail is formed in the atmosphere; this we shall consider at more length hereafter. At present we must turn our attention to the influence of these phenomena upon cold and heat; for it is a known fact, that rain and evaporation are not only engendered by cold and heat, but, vice versâ, that rain and evaporation, in their turn, engender cold and heat in the air.
CHAPTER VII.
HOW HEAT IN THE AIR BECOMES LATENT, AND HOW IT GETS FREE AGAIN
In the preceding chapter it was shown how warm air produces evaporation, and how cold air causes rain and snow. In this chapter we desire to demonstrate how the reverse may take place, viz., the engendering of cold and heat by evaporation and rain.
Although what we wish to prove in the following is firmly established, yet it is not easy to make it understood. For this reason many educated men, who have read much about "free and latent heat," have mistaken ideas about it.
In order that what we shall explain may be in the reach of every one, we must again choose our examples from life itself, and request our readers to come to our aid with their thoughts.
Every one knows how water is boiled. It is placed over the fire, the heat of which communicates itself to the water and heats it more and more. Now, where does the heat of the fire go? It is taken up by the water; thus to speak, the water absorbs the heat. This explains why a cooking-stove on which a dinner is cooked, does not get near as warm as it would, if the same quantity of fuel had been used without any cooking on the stove. For a portion of the heat being absorbed by the meat, it cannot heat the stove; hence the stove fails to receive the amount of heat that is used in cooking the meat.
What will be the effect of taking boiling water from the stove and placing it in the room somewhere? Where will the heat of the water go then?
We all know that in this case the water cools down by degrees. The water gives out its heat. Now, it is evident that while on the fire, the water had absorbed heat; and that it gave out that heat on being put in a colder place.
But what will become of the water if it is allowed to continue to absorb heat? What becomes of a pot of water, if, on beginning to boil, it is not taken off the fire? Does such water continue to absorb heat?
Observation shows that this is not the case. Put a thermometer into boiling water; it will immediately rise to 212 degrees; let it remain there ever so long, it will not rise a degree higher. But during that time there was a brisk fire; it is evident, therefore, that heat was continually passing into the water. Where, then, is this heat? It has not remained in the water, or else the thermometer would have continued to rise. It must be, then, that it has passed away with the burning hot steam which has been constantly rising and floating about in the room. Moreover, it is well known that water, when allowed to continue to boil, decreases in quantity. Our housewives call this "boiling down." In truth, however, the water boils up; for, if you notice carefully, a part of the water, while boiling, is changed into steam, which may be seen rising from the pot and ascending in the air. The question naturally arises now, where is the heat that the boiling water has been continually absorbing? It has not remained in the water, or the thermometer would have continued to rise. The answer is now evident: the heat has risen with the steam, and with it floats about in the air; or, in other words, the heat has been absorbed by the steam; or, which is the same, the heat has become latent in the steam. Therefore we are correct in saying, it takes heat to change water into steam. We know now where the heat has gone; it has become latent in the steam.
The next question might be: Can this latent heat become free again? Certainly it can; and many a good housewife has convinced herself of it very often, though perhaps she did not philosophize about it. When touching unawares the spout of the tea-kettle with her hand she felt as though her hand was wet, and scalded besides. Whence did this come? The hand was wetted by the steam, which, on coming in contact with the hand, changed to water again, but in the same moment, also, the steam gave up its heat to the hand by scalding it. Steam, therefore, when changing into water, gives its latent heat up again; or, the latent heat becomes free.
This phenomenon, which may be witnessed in every kitchen, happens in nature on a larger scale; by what powerful effects it is accompanied, we propose to show in the next chapter.
CHAPTER VIII.
LATENT HEAT PRODUCES COLD; FREE HEAT, WARMTH
He who considers how water when heated is transformed into steam, and how this steam has absorbed the whole portion of heat that was necessary to form it, will easily understand, that places where vapor is formed must become cooler. Just as the fire used for cooking purposes cannot heat the stove, so that portion of the sun's heat which changes the water on the surface of the earth into vapor, cannot heat the earth. Hence it follows, that wherever water evaporates, the air turns cool, because the heat, instead of being imparted to the air, is used in forming vapor; this vapor, then, contains the same portion of heat that was necessary to form it; or, scientifically speaking, vapor makes heat latent.
When in summer it is oppressively hot, and a heavy shower comes, it is often more oppressive during the rain than before; but after the rain the weather is, as we call it, cooled off.
What is the cause of this? After the rain the surface of the earth is wet, and the moisture begins to evaporate. In other words, the rain-water changes again into vapor. To do this, heat is necessary, and is withdrawn from the air and from the surface of the earth; by this means air and earth become cool.
It is very agreeable during the summer-time to have the streets of cities sprinkled with water, and it is also very healthy, because the evaporation of the sprinkled water renders heat latent, and thus cools off the air.
The reverse, however, may also take place. As the housewife's hand is scalded when the steam changes on her hand into water, that is, as the steam by turning into water again gives up the heat it possessed, just so acts nature. When vapor in the air turns into rain, it gives up that portion of heat which it had held latent, and hence it is, that before a rain or snow-storm the weather turns warmer.
When in winter it suddenly turns a little warm, that is, when the cold suddenly diminishes, we know that it is going to snow. The only reason why it has become warm is this, that in the air above, vapor has changed into snow, thus giving up its heat, the benefit of which we feel. Thus in summer-time, when the sun becomes fiercest, people say "The sun draws water, it will rain." The truth is, that the vapors in the air change into water, and thus give up their heat; people now think the sun has become hotter.
Another consequence of this phenomenon is the fact, that in countries where there is much water, the air in summer is much cooler, because a great deal of water evaporates there, by which means heat is absorbed or made latent. In winter the air in such countries is warmer, because much vapor is changed into water; thus heat becomes free.
It is evident that all this has a great influence upon the weather – an influence that may be calculated even in advance.
To state an example: The positions of Berlin and London are such, that the summer-heat and the winter-cold ought to be equal in both places. But because England is an island in the ocean, that is, surrounded by large masses of water, the evaporation of water is in London much greater; hence the summer there is cooler. For the same reason rain and fog are much more frequent there, and the winter, consequently, is less severe.
In the course of this work we shall see how similar conditions have very great influence upon whole countries, and therefore often cause, contrary to the rule, cold summers and warm winters.
CHAPTER IX.
RULES ABOUT THE WEATHER, AND DISTURBANCES OF THE SAME
If we cast a glance upon the phenomena of our atmosphere, we find that they are indeed computable, and that the weather in general may be foretold, even for large countries, with some degree of certainty. Nay, there are countries where the weather is not variable at all, but changes at regular periods and according to fixed rules.
In countries near the equator, where the sun's heat is very strong, heat, calm, and dryness prevail during the summer-time. This state of the atmosphere continues uninterruptedly until winter; nor can there be any frost there in winter, because even then the sun's rays fall with but little obliquity upon the surface of the earth. But inasmuch as the sun no longer heats the earth to the same degree, the air ceases to retain the same amount of heat, and as a great deal of cold air is constantly passing in from the poles, the vapor spoken of above is, at that season of the year, changed back into water. Thus, winter there is merely a long, uninterrupted rainy season.
We see that for the warmer countries the rules of temperature are pretty constant and sure; there one is not surprised by irregularities of weather such as occur with us. Summer brings heat, calm, and dryness; winter, east winds, thunder-storms, and continual rain. The rain once ceasing, the sun reappears in a few days, and everything begins to bloom again.
This holds good only for the countries near the equator. The further you go towards the poles, the more varied become summer and winter, the length of day and night, heat and cold, and consequently, also, the condition of the atmosphere and of the weather proper.
A glance upon the map will convince any one, that it is with us that the weather is most changeable. The reasons for this may now be more closely examined. Our country lies nearly half way between the pole and the equator. From our pole we constantly receive a cold wind, the north wind. And above, in the atmosphere, a warm wind, the south wind, goes continually from the equator to the pole. Through the rotation of the earth around its axis from west to east, the north wind becomes an easterly, that is, a northeast wind; and the south wind in the upper atmosphere becomes a westerly, or southwest wind. The former, coming from cold countries, carries no vapor with it; hence, during northeast wind we have clear sky, or sunshine, but without heat. If this wind occurs in winter, it brings us dry frost; in daytime the sun shines splendidly, at night the stars sparkle brilliantly; yet our breath freezes on our lips. The same wind when prevailing in the first days of spring, causes us, in spite of the glaring sun, to feel considerably cold in the shade.
And it is but natural that it should be so.
The wind comes from the north; there ice and snow are just melting, and the sun's heat being employed for this "melting business," the air cannot receive much of it.
This kind of weather would be regular with us; but, as we know already, the heated upper air flows from the equator to the north pole; now we live in the very region where this upper air, in its descent towards the poles, at times touches the surface of the earth, thus causing warm currents of air, which occasionally are followed by cold ones.
Near the equator the cold current of air moves below and the warm one above; while in our regions, both currents meet near the surface of the earth, struggle with each other, seek to repel one another, rush and roll in all directions over the land, and bring us such varieties of weather as will exasperate all weather prophets, and greatly increase the difficulty of scientific solutions in meteorology.
In the next chapter we shall endeavor to prove that this state of affairs, together with the situation of our country, are the main causes of the changeableness of our weather.
CHAPTER X.
THE CHANGEABLENESS OF THE WEATHER WITH REGARD TO OUR GEOGRAPHICAL POSITION
We have endeavored to explain why our weather is so uncertain and incomputable. As we have seen, it has its origin in this, that in our regions the warmer equatorial currents of air no longer move above the colder ones, but that they descend here, and pursue their northern course alongside and opposing the colder currents. This often gives rise to a struggle between cold and warm currents. In summer we witness such combats very frequently. The sky is at first bright; the sun sends down his most powerful rays; in the shade we are refreshed by a strong draught, which keeps the sky clear, and free from clouds. Suddenly there comes a calm. Even in the shade the heat now becomes intolerable. The trees stand immovable; no leaflet stirs. The complete calm becomes unendurable, and causes anxiety. "Always a calm before a storm," say the people, and hasten to seek shelter in their houses – and well! for it is not long before a counter wind commences to blow. The weathercock turns round, the dust in the streets is whirled up in eddies, and here and there rises in clouds to the house-tops. Suddenly clouds are seen to form themselves; the trees shake their crowns; the leaves rustle, and before one is aware of it, we have storm, thunder, and violent rain, which cool off the earth.
Whence came this weather; more especially, whence came the calm preceding it, and the whirlwind following?
There were two opposite currents of air, which for a time avoided each other, but at length met over our heads. Each current at first pressed on the other with equal force, so that they mutually were brought to a stand-still; this we called a calm. But such an equilibrium does not last long, for one current must in the end overcome the other; they whirl through one another, raise the dust in high columns, seize the trees and give them a thorough shaking. The cold current changes the vapor of the warm current into clouds, then into rain. The pouring down rain immediately sets free the heat. At this stage electrical phenomena are witnessed, such as lightnings, claps of thunder, and concussions of the air. And this continues until one current of air has carried the victory over the other; not till then does the weather become quiet again.
Besides these opposing currents of air, which come from the north and south, there are other causes disturbing our weather, viz., the geographical position of our country in regard to the east and west.
A glance on the map reminds us that our continent borders, on the east and west, on that immense waste of water, the ocean. We know now that the air above the water is always saturated with vapors, while the air over the land is comparatively dry. And moist air contains heat, dry air does not; both, however, are continually tending towards equilibrium and wish to exchange temperatures from each other. As our dry air is surrounded on both sides by moist air, it is evident that we must more or less partake of both heat and cold; but it moreover accounts for the happy circumstance that we have much rain; hence our soil is well watered, and this is a blessing to any country.
CHAPTER XI.
ABOUT THE DIFFICULTY AND POSSIBILITY OF DETERMINING THE WEATHER
Having now explained the rules referring to the conditions of our weather, and proved that owing to the geographical position of our country, to determine the weather in advance, is difficult, we wish to examine this difficulty a little more closely in pointing out the wrong direction which has hitherto been pursued in the science of meteorology.
The main difficulty in predicting the weather for any given place consists in this, that a change in the atmosphere need not originate in the place where it occurs. Thus, to-morrow's weather in New York is not a consequence of the condition of the air as it exists there to-day; for the air is continually moving, and, owing to many disturbances, is carried over city and country. We have no sure means of ascertaining whence the wind will come to us to-morrow. All we know is, that from all sides currents of air are moving simultaneously; from the north pole a cold current, from the equator a warm one, from the ocean one saturated with moisture. All these winds are in continual commotion, and have the characteristics of the neighborhood from which they come. If from the state of the weather in New York to-day it were desired to predict the weather there for to morrow, one ought to be able to overlook a space of about a thousand miles around; in other words, it must first be ascertained what is the state of the atmosphere within about a thousand miles of the city. Besides, there should be known the direction of all the winds within this wide space, and their speed, and whether they contain much moisture or little. Not without this information could a calculation be made about the velocity with which a change of the weather would take place in New York; what results the meeting of two or more currents of air might call forth; and what kind of weather this might produce there.
Weather, therefore, for the present state of meteorology, is but a subject of investigation into the existing condition of existing phenomena, and not a subject of prediction of coming phenomena. It is true, there are general rules by which a proximate success in predicting may be obtained. If winter begins mild, or, better, if southwest winds and rain prevail till the middle of January, it is very likely that this will be counterbalanced by a northeast wind in the latter part of the winter. The saying, therefore, is correct, "green Christmas and white Easter;" but this rule is by no means infallible, the counteraction may be accelerated by violent storms, or greatly retarded by mild currents of air.
Not before the time that meteorological stations are established throughout the land, and connected by electric telegraphs – a project which to us may seem immense, but to our children will appear very simple and natural – not before that time will a city like New York, for example, receive timely information about the conditions of the currents of air at all the stations. At each of these places the force of the current, its warmth, moisture, and weight will be accurately ascertained by instruments. Then, and then only, we may calculate what currents will meet and where, and what effects the meeting will have. If this be done on Saturday, the Sunday papers will be enabled to state precisely whether the church-goers must provide themselves with umbrellas or parasols.
But not for Sunday alone will this be of importance. It will be long after their establishment, that such weather-stations, connected by telegraphs, will prove their real efficiency and blessing; and our descendants, perhaps, will wonder how we could live without an institution, which to them will appear as simple and natural as do to us gaslights and railroads, which by our forefathers would have been rejected as idle dreams or works of witchcraft.
CHAPTER XII.
THE FALSE WEATHER-PROPHETS
We wish to speak here a few words about the false methods, that have hitherto been applied to the investigation and foretelling of the weather.
The weather prophecies of the almanac are a disgrace to our advanced age. Those who still print them deserve that their productions should nowhere find sale. We are not of those who expect everything of the magistrates and their orders; but an example should be set to prevent the publishers from dishing up to the people such absurdities.
Some of these wily prophets pretend to read their predictions in the course of the planets. For this purpose, they have divided the planets into two classes, according to their positions in regard to the earth and sun: 1st, those that produce cold, and 2d, those that produce heat. By this means they pretend to prophesy how many degrees of heat or cold there will be every day at sunrise or sunset.
When critically analyzed, these prophecies prove to be theoretically and practically nothing but charlatanry.
It is beyond all doubt that the position of the planets is, to state an example, for Boston the same as for the city of Washington; if there are any heat or cold-producing planets, they would have the same effect at Boston that they would at Washington. But this is not the case. Boston has often cold weather when in Washington it is very warm, and vice versâ. Besides such a heating or cooling influence of planets would be perceivable on every spot of the earth alike which again is not warranted by facts. On the contrary it often happens that when cold winds are passing over one part of the country, warm winds are passing over another. It is almost certain that cold winters in Europe always accompany warm winters in America; and again, that cold winters in America usually accompany warm ones in Europe. On a closer examination of the facts in the case, we must conclude that, on the whole, weather-prophets take things very easy. Noting the mean heat of each day, and trusting to their good luck, they prophesy one or two degrees above or below. Now, there is no great risk in doing this, and as a matter of course such prophecies are realized one out of two. But at times, almanacs announce an extraordinary increase of cold or heat for a given day, although the situation of the planets does not change suddenly in one day. Then, their predictions very seldom prove to be correct.
In such cases the almanac-makers know how to manage affairs. The country being very large, they send for information to those places where observations on the weather are made. It is almost certain that somewhere in the land their prophesy has come true. Very likely the cold may have increased extraordinarily in the course of a day at New York, Boston, Chicago, Cincinnati, or St. Louis, etc., afterwards the weather-prophets compare their predictions with the results of observation in the various cities, and publish whatever of them are found to have been true.