
Полная версия
Popular Books on Natural Science
CHAPTER IX.
ABOUT NOURISHMENT
In obedience to the demands of modern science, numerous experiments about nutrition have been made, in regard to digestion as well as to the effects of hunger and of various elements of food.
As to digestion, the most excellent observations were made on men afflicted with a fistula in the abdomen, that is, a wound penetrating to the stomach. By means of this wound, it was ascertained very minutely how long it took to digest food, and what kind of transformation it underwent. From this and other experiments it appeared, that the time for digestion, though varying greatly with the various articles of food, lasts from one and one-half to five and one-half hours. Those most quickly digested are: soft sweet apples, beaten eggs, and cooked brain. To digest boiled milk, raw eggs, soft sour apples, roasted beef, liver, two hours were required. Cooked spinal marrow, raw cabbage, fresh milk, roasted beef, oysters, soft-boiled eggs, and raw ham, took nearly three hours. Wheat bread, old cheese, potatoes were digested in nearly three and one-half hours; pork, boiled cabbage, lamb's fat, not before five hours.
The experiments about the effects produced by hunger were tried only on animals. The results were that during the state of starvation three-fourths of the blood disappeared; the fat was almost entirely consumed; the flesh disappeared one-half; even the skin diminished one-third, and the bones lost about one-sixth of their weight. The least decrease was found to be in the nerves, a striking proof that nerves possess a great power of self-preservation, provided there be but a minimum of matter to feed them. From numerous experiments the conclusion was drawn, that an adult weighing about one hundred and thirty pounds must die if he were to lose, say fifty pounds, by starvation.
With regard to the effects of the various articles of food, experiments applied to dogs have shown that they can live on bones for a long time; but that they die if fed on sugar only, and when examined after death, no trace of any fat is to be found.
Animals fed on substances that contained no phosphorus and lime became fat; but they died for want of the proper nourishment for their bones. Animals died also when nourished only with pure albumen or pure caseine. The most remarkable fact in this connection is, that they perished in the same length of time in which they would have died, if they had taken no food whatever.
Experiments tried on man have shown that it is injurious to eat uniform food. A constant change in our food is extremely nourishing and healthy. This is an experience made in prisons and barracks; changes of food are made there every day during the week, so that each day they have a different dinner. Once, a physician in England wished to try the effects of uniform food on himself. He took nothing but bread and water for forty-five days; in consequence of this he decreased eight pounds. Then he ate for four weeks but bread and sugar, then bread and oil three weeks; but finally he succumbed under his experiments, and died, after having experimented thus for eight months.
We must not, therefore, call it daintiness when we feel an appetite for more variety of food, or if we soon get tired of uniform meals: a constant change in this respect is necessary. Experiments have shown that rabbits continue their health, if alternately they receive one day potatoes, the next day barley; but if they receive exclusively potatoes or barley, they soon die.
In conclusion, we will mention a few articles of food and their qualities. Among grains, wheat is known to be the most nutritive, and wheat bread and meat taken together is always good, wholesome food. Rice produces fat, but if taken by itself, it is not worth much, since it is nourishing only if eaten with butter, or fat, and a little meat. Potato is a cheap, and yet an expensive food; for it contains very little nutriment. In order to be of benefit it must be eaten in great quantity; besides, it is necessary to season it with salt, butter, or fat, as otherwise it would be totally useless. A good diet is peas, beans, and lentils; but their hulls are indigestible, and must be removed.
In general, beverages are not counted among articles of food; and kitchen-salt is commonly believed to be but a matter of taste; but this is a great mistake. Coffee and tea, too, are nourishing in their way; good beer is equal to half a dinner, and as to salt, a frequent relish of the same is an excellent means of nutrition.
Cheap coffee, cheap beer, and cheap salt are therefore a great benefit to the people.
PART IV.
LIGHT AND DISTANCE
CHAPTER I.
SOMETHING ABOUT ILLUMINATION
From time to time we hear of plans to illuminate whole cities by a great light from a single point. The credulity of the newspaper public about affairs belonging to Physics is so great, that we are not surprised if such plans are spoken of as practicable; though, indeed, one needs but cast a glance of reflection on them, to be at once convinced of their impracticability.
The impracticability does not consist so much in this, that no such intense light can be made artificially, as in the circumstance that the illuminating power of light decreases enormously as we recede from it.
In order to explain this to our readers, let us suppose that on some high point in New York city, say Trinity-church steeple, an intensely brilliant light be placed, as bright as can be produced by gases or electricity. We shall see, presently, how the remoter streets in New York would be illuminated.
For the sake of clearness, let us imagine for a moment, that at a square's distance from Trinity church there is a street, intersecting Broadway at right angles. We will call it "A" street. At a square's distance from "A" street let us imagine another street running parallel to it, which we will call "B" street; and again, at a square's distance, a street parallel to "B" street, called "C" street; thus let us imagine seven streets in all – from "A" to "G" – running parallel, each at a square's distance from the other, and intersecting Broadway at right angles. Besides this, let us suppose there is a street called "X" street, running parallel with Broadway and at a square's distance from it; then we shall have seven squares, which are to be illuminated by one great light.
It is well known that light decreases in intensity the further we recede from it; but this intensity decreases in a peculiar proportion. In order to understand this proportion we must pause a moment, for it is something not easily comprehended. We hope, however, to present it in such a shape, that the attentive reader will find no difficulty in grasping a great law of nature, which, moreover, is of the greatest moment for a multitude of cases.
Physics teach us, by calculation and experiments, the following:
If a light illuminates a certain space, its intensity at twice the distance is not twice as feeble, but two times two, equal four times, as feeble. At three times the distance it does not shine three times as feeble, but three times three, that is nine times. In scientific language this is expressed thus: "The intensity of light decreases in the ratio of the square of the distance from its source."
Let us now try to apply this to our example.
We will take it for granted that the great light on Trinity steeple shines so bright, that one is just able to read these pages at a square's distance, viz., on "A" street.
On "B" street it will be much darker than on "A" street; it will be precisely four times darker, because "B" street is twice the distance from Trinity church, and 2 × 2 = 4. Hence, if we wish to read this on "B" street, our letters must cover four times the space they do now.
"C" street is three times as far from the light as "A" street; hence it will be nine times darker there, for 3 × 3 = 9. This page in order to be readable there, would then have to cover nine times the space it occupies now.
The next street, being four times as remote from the light as "A" street, our letters, according to the rule given above, would have to cover sixteen times the present space, for it is sixteen times darker there than on "A" street.
"E" street, which lies at five times the distance from the light, will be twenty-five times darker, for 5 × 5 = 25. "F" street, which is six times the distance, we shall find thirty-six times darker; and, lastly, "G" street, seven times the distance from the light, will be forty-nine times darker than "A" street, because 7 × 7 = 49. The letters of a piece of writing, in order to be legible there, must cover forty-nine times the surface that our letters cover now.
But the reader will exclaim: "This evil can be remedied. We need but place forty-nine lights on Trinity steeple; there will then be sufficient light on "G" street for any newspaper to be read." Our friend will easily perceive, however, that it is more judicious to distribute forty-nine lights in different places on Broadway, than to put them all on one spot.
This is sufficient to convince any one that we may be able to illuminate large public places with one light, but not the streets of a city, and still less whole cities.
CHAPTER II.
ILLUMINATION OF THE PLANETS BY THE SUN
It was demonstrated above, that it is impossible to illuminate large distances by a single light. Yet we must acknowledge that nature herself does this, and that the sun is the only light which shines throughout the solar system; for the light which is seen in the planets is but light received and reflected from the sun.
This is sufficient reason for us to believe, that there are not on every planet creatures as we see them on our earth; but that, on the contrary, each celestial body may be inhabited by creatures organized according to the distance of the planet from the sun; that is, adapted to the degree of light produced there by the sun.
For the natural sciences teach us, that solar light is subject to the same laws as our artificial light: it decreases as the distance increases. The planets more remote from the sun are illuminated less than those nearer to it. The ratio in which this light decreases, is precisely the same as that of the terrestrial light illustrated above, viz., according to the square of the distance. In other words, when the distance is double, the intensity of the light is one-fourth as great; when three times, one-ninth as great; when four times more remote, one-sixteenth as strong, etc.; in short, at every distance as much weaker as the distance multiplied by itself.
Presently we shall see that the planets are illuminated in inverse proportion to their distance from the sun. From this alone we come to the conclusion, that on every planet the living beings must necessarily be differently constituted.
The name of the planet nearest to the sun is Mercury. It is about two and a half times nearer to the sun than our earth, therefore it receives nearly seven times as much light. We can scarcely conceive such an intensity of light and all the consequences resulting from it. If instead of one sun we should happen to have three, there is no doubt that we should go blind; but seven suns, that is, seven times the light of our brightest days, we could not endure, even if our eyes were closed; the more so, as our eyelids, even when firmly closed, do not protect us from the sun's light entirely. This is a proof of our assertion, that the living beings on the planet Mercury must be differently organized from us.
Venus, the third planet, is one and a third times nearer to the sun than we are. The light on that planet, therefore, is nearly twice as bright as on ours. But inasmuch as even this would be unbearable for us, the creatures on this planet must likewise be different from us.
The third planet is the earth we inhabit. The intensity of the sunlight in bright summer days is well known to us from experience, although no one has as yet been successful in measuring its degree as precisely as has been done with heat by the thermometer. It is true that in modern times a certain Mr. Schell, in Berlin, proposed to measure light accurately, in a way that elicited the approbation of naturalists, especially of Alexander von Humboldt. However, the experiments proposed have not yet been properly carried out, though they are very useful to photographists. Therefore we do not know, up to the present time, whether there is any difference in the light of two cloudless summer days; just as little are we able to determine how much the moon's light is weaker than the sun's.
The fourth planet's name is Mars; its distance from the sun is one and a half times our distance from the sun. There the sun's light is about half as strong as with us. Now, although we often may have days which are half as bright as others, it is yet very doubtful whether we could live on Mars; for light does not act upon our eyes only, but on our whole body and its health. It is likely that the very want of light there would prove fatal to us.
The twenty-four newly discovered planets have days that are nearly six times darker than ours. The daylight on these planets is probably as it was with us during the great eclipse of the sun in July, 1851. This light was very interesting for a few minutes, but if it were to continue it would certainly make us melancholy.
Far worse yet fare the remoter planets. On the planet Jupiter it is as much as thirty times darker than with us. On Saturn, eighty times. On Uranus, even three hundred times; and upon the last of the planets, Neptune, discovered in 1845, light is nine hundred times more feeble than upon our globe.
Although it is true that all of the remoter planets have many moons or satellites, yet it must not be forgotten that the moons themselves are but very feebly illuminated; that their light benefits during the night only, and even then only lovers and night revellers.
PART V.
THE WONDERS OF ASTRONOMY
CHAPTER I.
A WONDERFUL DISCOVERY
Many people are greatly surprised, that when a new planet is discovered – and within late years this has been frequently the case – astronomers should be able to determine a few days afterwards its distance from the sun, together with the number of years necessary for its orbit. "How is it possible," they ask, "to survey a new guest after such a short acquaintance so accurately, as to foretell his path, nay, even the time of his course?"
Nevertheless it is true that this can be done, and certainly no stage-coach nor locomotive can announce the hour and minute of its arrival with as much accuracy as the astronomer can foretell the arrival of a celestial body, though he may have observed it but a short time.
More yet is done sometimes. In 1846, a naturalist in Paris, Leverrier by name, found out, without looking in the sky, without making observations with the telescope, simply by dint of calculation, that there must exist a planet at a distance from us of 2,862 millions of miles; that this planet takes 60,238 days and 11 hours to move round the sun; that it is 24 1/2 heavier than our earth, and that it must be found at a given time at a given place in the sky; provided, of course, the quality of the telescope be such as to enable it to be seen.
Leverrier communicated all this to the Academy of Sciences in Paris. The Academy did not by any means say, "The man is insane; how can he know what is going on 2,862 millions of miles from us; he does not even know what kind of weather we shall have to-morrow!" Neither did they say, "This man wishes to sport with us, for he maintains things that no one can prove to be false!" Nor, "The man is a swindler, for he very likely has seen the planet accidentally, and pretends now that he discovered it by his learning." No, nothing of the kind; on the contrary, his communication was received with the proper regard for its importance; Leverrier was well known as a great naturalist.
Having thus learned how he made the discovery, the members of the Academy felt convinced that there were good reasons to believe his assertions to be true.
Complete success crowned his efforts.
He made the announcement to the Academy in January, 1846; on the 31st of August he sent in further reports about the planet, which he had not seen as yet. The surprise and astonishment on the part of scientific men can scarcely be imagined, while on the part of the uneducated there were but smiles and incredulity.
On the 23d of September, Mr. Galle – now Director of the Breslau Observatory, at that time Assistant in that of Berlin, a gentleman who had distinguished himself before by successful observations and discoveries, received a letter from Leverrier, requesting him to watch for the new planet at a place designated in the heavens. Though other cities at that time possessed better telescopes than Berlin, this city was chosen because of its favorable situation for observations.
That same evening Galle directed his telescope to that spot in the sky indicated by Leverrier, and, at an exceedingly small distance from it, actually discovered the planet.
This discovery of Leverrier is very justly called the greatest triumph that ever crowned a scientific inquiry. Indeed, nothing of the kind had ever transpired before; our century may well be proud of it. But, my friendly reader, he who lives in this age without having any idea whatever of the way in which such discoveries are made – he does not deserve to be called a contemporary of this age.
We will not try to make an astronomer out of you; we merely wish to explain to you the miracle of this discovery.
CHAPTER II.
MAIN SUPPORT OF LEVERRIER'S DISCOVERY
When Leverrier was working at his great discovery he did not strike out a new path in science; he was supported by a great law of nature, the base of all astronomical knowledge. It is the law of gravitation, discovered by Sir Isaac Newton.
Those of our readers who have fully understood what we said before (page 50) about light, will now easily comprehend, what we are going to say about the force of gravity.
Every heavenly body is endowed with the power of attraction; that is, it attracts every other body in the same manner that a magnet attracts iron. If the celestial bodies, or, to speak only of one class, if all the planets were at rest, that is, without motion, they would, on account of the great attractive power of the sun, rapidly approach it, and finally unite with it and form one body.
That this does not take place, may be ascribed solely to the fact that all planets have their own motion. This motion, combined with the attractive force of the sun, causes them to move in circles around it.
This may be illustrated by the following: Suppose a strong magnet to lie in the centre of a table. Now, suppose some one to place an iron ball on the table; then will this ball run straightway towards the magnet. But if some one were to roll the ball so that it should pass the magnet, it would at first run in a straight line, but the magnet attracting it at every moment of time, the ball would be compelled to deviate from its straight course and would begin to circulate round the magnet.
We see that this circular motion round the magnet springs from two forces: first, from the hand that starts the ball in a straight line; and secondly, from the attraction of the magnet, which at every moment draws the ball towards itself.
Newton, the greatest natural philosopher of all times, who lived in England two hundred years ago, proved, that all the orbits round the sun, as described by the planets, are caused by two such forces; by the motion of the planets peculiar to themselves, which, if not interfered with, would make them fly through space in a straight line; and by the attractive force of the sun, which is continually disturbing that straight course, thus forcing the planets to move in circles around him.
But Newton has discovered more than this. He succeeded in proving that, knowing the time of a planet's revolution around the sun, we can determine precisely with what force the attractive power of the sun affects it. For if the sun's attractive power is strong, the planet will revolve very quickly; if weak, it will move slowly.
Were the sun, for example, all of a sudden to lose a portion of his attractive force, the consequence would be that the earth must revolve around him more slowly. Our year, which now has three hundred and sixty-five days, would then have a much greater number of days.
Newton has also shown – and this is for us the main thing – that the attractive force of the sun is strong in his close proximity, but that it diminishes as the distance from him increases. In other words, the remoter planets are attracted by the sun with less force than those nearer to him. The attractive force decreases with the distance in the same proportion as light, which, we saw a little while ago, decreases in intensity as the square of the distance increases. This means, that a planet at a distance from the sun twice as great as that of the earth, is attracted with only one-fourth the force; one that is three times the distance, with one-ninth of the force, etc.
This great law pervades all nature. It is the basis of the science of astronomy, and was the main support of Leverrier's discovery.
CHAPTER III.
THE GREAT DISCOVERY
Perhaps the question presents itself to the thinking reader: If it be true that the heavenly bodies attract each other, why do not the planets attract one another in such a manner that they will run round and about each other?
Newton himself proposed this question; he also found the answer. The attractive power of a celestial body depends upon its larger or smaller mass. In our solar system the sun's mass is so much larger than that of any of the planets, that the balance of attractive power is largely in his favor; hence the revolving of the planets around him. If the sun were to disappear suddenly the effect of the attractive influence of the planets upon one another would be tremendous. There can be no doubt that they would all begin to revolve around Jupiter, because that planet has the largest mass. To give some examples in figures, – the sun's mass is 355,499 heavier, while Jupiter's is but 339 times heavier than that of the earth. It is evident that, the sun's mass being more than a thousand times larger than Jupiter's, so long as the sun exists the earth will never revolve around Jupiter.
Yet Jupiter is not without influence upon the earth; and though it is not able to draw it out of its course round the sun, yet it attracts the earth to some extent. Observations and computations have shown us, that the earth's orbit around the sun, owing to the attraction of Jupiter, is somewhat changed, or, as it is called, "disturbed."
As with Jupiter and the earth, so with all the other planets; their mutual attraction disturb their orbits round the sun. In reality, every planet revolves in an orbit which, without this "disturbance," would be a different one. The computation of these disturbances constitutes a great difficulty in astronomy, and requires the keenest and most energetic studies ever made in science.
Perhaps some of our readers may ask here, whether in course of time these disturbances will become so great as to throw our whole solar system into confusion? Well, the same question was proposed by a great mathematician named Laplace, who lived towards the end of the last century. But he himself answered the question in an immortal work, "The Mechanics of the Heavens." He furnished the proof, that all disturbances last but a certain time; and that the solar system is constructed so that the very attractions by which the disturbances are caused, produce at the end of certain periods a regulation or rectification; so that in the end there is always complete order.
After what has been said, it is evident that if one of the planets were invisible, its presence would still be known to our naturalists, on account of the disturbances it would cause in the orbits of the other planets; unless, perhaps, its mass be so insignificant as to render its power of attraction imperceptible.
And now we may proceed to explain the subject of this chapter.