Полная версия
Генезис. Небо и Земля. Том 1. История
§36. Георг Пурбах (1456), наблюдая большую комету, которая позднее была отождествлена с кометой Галлея, предпринял попытку определить размеры кометы и её удаление от Земли. [49] В своих расчётах Пурбах исходил из того, что комету следует отнести к «подлунному миру», то есть рассматривал не просто небесное тело, а метеорологические явления в верхних слоях атмосферы. Он пришёл к выводу, что расстояние до кометы превышало 1000 миль, а размер – 80 миль; и естественно эти оценки были слишком грубы, поскольку не имели достаточных фактических оснований.
§37. В 1474 году Иоганн Мюллер (Региомонтан) издал «Эфемериды» – таблицы координат звёзд, положений планет и обстоятельств соединений и затмений на каждый день с 1475 по 1506 годы. [50] Это были первые астрономические таблицы, изданные типографским способом. Ими пользовались Васко да Гама, Христофор Колумб и другие мореплаватели. Региомонтан написал ряд работ об астрономических инструментах: универсальной астролябии (так называемая «сафея», описанная Аль-Заркали), солнечных часах, армиллярной сфере (Региомонтан называл устройство «метеороскопом»). В 1496 году Региомонтан завершил перевод «Альмагеста» Птолемея, начатый Георгом Пурбахом.
§38. Джироламо Фракасторо (1535) и Пьетро Апиано (1540) обнаружили, что кометные хвосты всегда появляются вдоль направления Солнца, но в противоположном направлении к нему. [51,52] В 1538 году он описал инструмент для астрономических наблюдений, а затем десятилетия спустя Галилео Галилей сделал такой телескоп. [53]
§39. В 1543 году накануне своей смерти Николай Коперник в работе «О вращениях небесных сфер», подтвердил и возродил тезис о гелиоцентрической системе мира, выдвинутый ранее Аристархом, что позволило обосновать параметры планетной системы и открыть закономерности планетных движений. [54] Коперник заложил два новых основополагающих постулата: о существовании движения у самой Земли и о ее нецентральном положении во Вселенной. Орбитальное движение Земли Коперник понимал еще в духе древних представлений о вращательном движении, при котором наклоненная к плоскости эклиптики23 ось Земли должна была описывать широкий конус, сохраняя ориентацию относительно центра вращения. Коперник ввел для компенсации такого пространственного разворота земной оси «третье» движение – обратное вращение самого тела Земли вокруг оси также перпендикулярной плоскости эклиптики. При обратном развороте Земли такой же разворот совершала и плоскость экватора. Из-за некоторого несовпадения скоростей в конце обратного разворота экватор пересекал эклиптику уже в ином месте, предваряя (на ~ 40») приход Земли в предыдущее место точки весеннего равноденствия. В итоге за 26 тысяч лет ось Земли описывала полный конус в направлении, обратном годичному орбитальному обращению Земли. Видимое движение Солнца по небу рассматривалось как кажущееся – как отображение истинного, причем двойного – годичного и суточного, движения Земли. Это сразу дало простое объяснение смены дня и ночи и смены сезонов, ввиду сохраняющихся наклона и пространственной ориентации оси вращения Земли. Этим же Коперник объяснил теорию затмений и дал оценки расстояний Земли от Солнца и Луны от Земли и их относительных размеров в земных радиусах. Он полностью отверг геоцентрический принцип и описал движение Сатурна, затем Юпитера, Марса, Венеры и Меркурия на гелиоцентрической основе, дав надежные методы расчета положений планет на небе по эклиптической долготе. Коперник изложил математическую теорию сложных видимых движений Солнца, Луны, пяти планет и сферы звезд, с приложением соответствующих математических (тригонометрических) таблиц и звездного каталога. В центре мира он поместил Солнце, вокруг которого движутся планеты, и вновь зачисленная в ранг «подвижных звезд» Земля, сохранившая статус «центра» только для одного небесного тела – Луны. Он зафиксировал, что Земля совершает вращение вокруг оси с периодом в одни сутки, двигается вокруг Солнца с периодом в год, а также указал на деклинационное24 движение с периодом также примерно в один год, приводящее к тому, что ось Земли перемещается приближенно параллельно самой себе. Он сформулировал принцип, называемый его именем, а иногда принципом заурядности (или посредственности, или усреднения), по которому ни Земля, ни Солнце не занимают какое-то особенное положение, а во Вселенной должно иметься множество звездных систем и планет с условиями, аналогичными земным. [55]
§40. Эразм Рейнхольд (1551) при поддержке герцога Пруссии Альберта I опубликовал новый набор астрономических таблиц на основе работы Коперника с фундаментальной экспозицией гелиоцентризма, так называемые Прусские таблицы. [56] В объяснительных канонах к таблицам Рейнхольд использовал в качестве парадигмы положение Сатурна при рождении герцога 17 мая 1490 года. С помощью этих таблиц Рейнхольд намеревался заменить Альфонсовы таблицы; он добавил новые таблицы, чтобы составители альманахов, знакомые со старыми Альфонсовыми таблицами, могли выполнять все шаги аналогичным образом. Прусские таблицы стали популярными в немецкоязычных странах по националистическим и конфессиональным причинам, и именно благодаря этим таблицам репутация Коперника была установлена как квалифицированного математика и астронома наравне с Птолемеем и помогла распространить методы расчета положения астрономических объектов Коперника.
§41. В своей работе «О новой звезде» Тихо Браге (1573) опроверг гипотезу Аристотеля о неизменности небесной сферы, заметив ранее в 1572 в созвездии Кассиопеи яркую звезду, которой до этого не было. Его измерения подтвердили, что «новые звезды» (ныне именуемые как «сверхновые звезды») не являются атмосферными явлениями, точно также, как и кометы. [57] В 1576 году Тихо Браге строит планетарную обсерваторию, а годом позднее наблюдает, что комета проходит через орбиты других планет. В 1592 году Браге составил каталог 777 звёзд со средней точностью измерения до 2′-5′. К 1598 году его уточненный каталог включал уже 1004 звезды.
§42. Одну из первых иллюстраций бесконечной Вселенной, окружающей Солнечную систему Коперника, сделал Томас Диггес (1576), который предположил, что звёзды располагаются во Вселенной не на одной сфере, а на различных расстояниях от Земли – более того, до бесконечности: «Сфера неподвижных звёзд простирается бесконечно вверх и поэтому лишена движения». [58] При этом Диггес не считал Вселенную за пределами Солнечной системы тождественной по своим физическим свойствам с Солнечной системой, а, по его мистифицированному мнению, «сфера» неподвижных звёзд есть «Дворец величайшего Бога, пристанище избранных, обиталище небесных ангелов». [59]
§43. Джордано Бруно (1584) предположил, что звезды – это Солнца, вокруг которых вращаются планеты. [60] Отвечая противникам гелиоцентрической системы, Бруно привёл ряд физических доводов в пользу того, что движение Земли не сказывается на ход экспериментов на её поверхности, опровергая также доводы против гелиоцентрической системы, основанные на католическом толковании Священного Писания. [61] В противоположность бытовавшим в то время мнениям, он полагал кометы небесными телами, а не испарениями в земной атмосфере. Бруно отвергал средневековые представления о противоположности между Землёй и небом, утверждая физическую однородность мира (учение о 5 элементах, из которых состоят все тела – земля, вода, огонь, воздух и эфир). Он предположил возможность жизни на других планетах. При опровержении доводов противников гелиоцентризма Бруно использовал теорию импетуса25. За свои убеждения он был сожжен по осуждению инквизиции в 1600 году.
§44. Галилео Галилей (1592) предположил, что физические законы небес являются такими же, как и на Земле. В 1610 году Галилей в телескоп наблюдал фазы Венеры, спутники Юпитера, кратеры на Луне и звезды в Млечном Пути. Развивая свое предположение, Галилей (1632) сформулировал принцип относительности, что законы механики одинаковы в любых инерциальных26 системах27 отсчета. [62] То есть, уравнения движения относительно любых инерциальных систем совпадают, эквивалентны друг с другом. Из принципа Галилея следует, что силы, действующие на точку, неизменны при переходе от одной инерциальной системы к другой, также инерциальной системе. Следовательно, все величины, вошедшие впоследствии в уравнение Ньютона, также неизменны при преобразовании от одной системы к другой системе. Галилей поддержал гелиоцентрическую теорию Коперника. [63]
§45. Иоганн Кеплер (1596) в книге «Тайна мира» попытался привести орбиты пяти известных тогда планет в соответствие с поверхностями пяти Платоновых28 тел. [64] Анализируя данные Тихо Браге, Кеплер указал, что существует слишком большой разрыв между орбитами Марса и Юпитера и постулировал присутствие планеты между ними, впервые предсказав наличие небесных тел этой части Солнечной системы.
§46. В 1603 году немецкий астроном Иоганн Байер издал звёздный атлас «Уранометрия», в котором обозначил звёзды каждого созвездия буквами греческого алфавита. [65] Ярчайшая звезда созвездия обычно обозначалась как α (альфа), а другие разбивались на группы примерно одинакового блеска и именовались последующими буквами в направлении от головы к ногам традиционного рисунка созвездия. Поскольку в греческом алфавите 24 буквы, для некоторых созвездий букв не хватало – в этом случае Байер прибегал к дополнительной цифровой нумерации, использованию латинских букв или одного греческого символа с несколькими цифровыми индексами29. Традиционные байеровские обозначения звёзд сохраняются и поныне.
§47. В 1604 году Иоганн Кеплер начал систематически наблюдать за новой звездой (SN 1604) в регионе между двумя планетами Юпитером и Сатурном. С точки зрения астрологии конец 1603 года ознаменовал начало огненного тригона, начала около 800-летнего цикла великих соединений; астрологи связывали два предыдущих таких периода с подъемом Карла Великого (около 800 лет назад) и рождением Иисуса Христа (около 1600 лет назад), и, таким образом, ожидали событий великого предзнаменования, особенно в отношении императора. Именно в этом контексте, как имперский математик и астролог императора, Кеплер описал новую звезду два года спустя в своем трактате De Stella Nova. [66] В нем Кеплер обратился к астрономическим свойствам звезды, принимая скептический подход ко многим бытовавшим астрологическим интерпретациям. Он отметил угасание светимости, предположил ее происхождение, и использовал отсутствие наблюдаемого параллакса30, чтобы утверждать, что она находилась в сфере фиксированных звезд, что еще больше подрывает доктрину непреложности небес (идея, принятая после Аристотеля, что небесные сферы были совершенными и неизменными). Рождение новой звезды подразумевало изменчивость небес. В приложении Кеплер также обсудил недавнюю хронологию работы польского ученого Лаврентия Суслиги, которая была использована Кеплером для укрепления теории астронома о том, что Вифлеемская звезда, возможно, была новой звездой, которая, возможно, появилась во время или после великого соединения Юпитера и Сатурна в 7 году до нашей эры (позже присоединился к Марсу в 6 году до нашей эры). Согласно библейскому рассказу, рождение Христа произошло в течение года или двух после появления звезды. Сценарий Кеплера, вероятно, дал логическое объяснение относительно Вифлеемской звезды, при этом оказывая астрономическую поддержку хронологическим идеям Суслиги – по аналогии с этой новой звездой – совпало бы с первым большим соединением ранее 800-летнего цикла.
§48. В 1604 году Кеплер исследовал зеркала и линзы, а в 1611 году он опубликовал книгу «Диоптрика», где подробно описал преломление света и понятие оптического изображения. [67] Понимание этих вопросов привело Кеплера к описанию иной схемы телескопической подзорной трубы31, построенной в 1613 году Кристофом Шайнером.
§49. Иоганн Кеплер нашел, что планеты движутся вокруг Солнца по вытянутым эллиптическим орбитам, причем Солнце может находиться в одной из двух фокальных точек эллипса32. Вторым законом он вывел, что отрезок прямой, соединяющий Солнце и планету, отсекает равные площади за равные промежутки времени. По его третьему закону квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их орбит. [68,69] Первые два закона движения планет Кеплер изложил в своём труде – «Новая астрономия» 1609 года. [70] Третий закон Кеплера (соотнесения периодов обращения и больших полуосей орбит планет) впервые приводится в главе 5 Harmonices Mundi, опубликованном в 1619 году. [71] В 1627 году Кеплер под покровительством императора Священной римской империи Рудольфа II составил и издал «Рудольфовы таблицы», описывающие движения планет, которые подготовлены на основании наблюдений Тихо Браге. [72] Это были первые таблицы движения планет, составленные с помощью логарифмических33 вычислений и на основе законов движения планет. Кеплер предсказал на основе открытых им законов прохождение Венеры на фоне солнечного диска в 1631 году, которое случилось уже после его смерти.
§50. С развитием оптики голландский математик Виллеброрд Снеллий ван Ройен в 1621 году вывел закон преломления, предусматривающий, что угол преломления луча при прохождении границы между двумя средами зависит от соотношения коэффициентов преломления этих сред. [73] Для преломления выполняется закон: луч падающий, луч преломленный и перпендикуляр, восставленный в точку падения луча, лежат в одной плоскости, причем для данных двух сред отношение синуса угла падения к синусу угла преломления есть величина постоянная, называемая относительным показателем преломления второй среды относительно первой. Несколько позднее этот же закон был опубликован и, возможно, независимо открыт Рене Декартом (1637) в работе «Диоптрика», где помимо законов преломления и отражения света развивалась идея эфира как переносчика света. [74] Впервые Декарт обнародовал свою гипотезу светоносного эфира в 1618 году, а изложил в труде «Мир, или трактат о свете» (1634), опубликованном тридцать лет спустя, представляя эфир как «тонкую материю», подобную жидкости, механические свойства которой определяют законы распространения света, заполняет всё пространство Вселенной, находится в постоянном движении по большей части в форме вихрей, однако не оказывает сопротивления при движении в нём тел. [75] Сам Декарт почти не использовал термин «эфир», возможно, по той причине, что приписывал ему свойства, радикально отличные от античного эфира.
§51. Пьер Гассенди (1624), критикуя Аристотеля, указывал, что как пространство, так и время могут быть измерены только в связи с телами: первое измеряется объёмом, второе – движением тел. [76] Материю Гассенди представляет состоящей из множества мельчайших компактных эластичных атомов, отделенных друг от друга пустым пространством, не заключающих в себе пустоты и потому неделимых физически, но измеримых. Число атомов и их форм конечно и постоянно (поэтому количество материи постоянно), но число форм меньше числа атомов. Гассенди не признает за атомами вторичных свойств: запаха, вкуса и других. Различие атомов (кроме формы) заключается в различии их главного свойства – веса или прирождённого их стремления к движению. Группируясь, они образуют все тела Вселенной и являются, следовательно, причиной не только качеств тел, но и их движения; ими обусловливаются все силы природы. Так как атомы не рождаются и не исчезают, то и количество живой силы в природе остается неизменным. Когда тело в покое, сила не исчезает, а только пребывает связанной, а когда оно приходит в движение, сила не рождается, а только освобождается. Действия на расстоянии не существует, и если одно тело притягивает другое, не соприкасаясь с ним, то это можно объяснить так, что от первого исходят потоки атомов, которые соприкасаются с атомами второго. Это одинаково применимо к телам одушевленным и неодушевленным. Гассенди (1647, 1649) отстаивал исходные физические положения Эпикура, по которым ничто не происходит из несуществующего и ничто не переходит в несуществующее; а вселенная всегда была такой, какова она в настоящее время, и всегда будет такой. [77]
§52. Жиль Персонн де Роберваль (1634) разработал метод неделимых, который он использовал для изучения квадратуры различных кривых, с его помощью впервые вычислил площадь циклоиды и определил объёмы производимых ею тел вращения и расчета объемов, но работу не опубликовал. Бонавентура Кавальери (1635) независимо открыл данный метод и опубликовал в трактате «Геометрия, развитая новым способом при помощи неделимых непрерывного» и продолжении (1647) «Шесть геометрических этюдов». [78,79]. Роберваль опубликовал всего две книги за свою жизнь. В 1636 году вышел его труд «Трактат механики весов, поддерживаемых мощностями на плоскостях, наклоненных к горизонтали» содержит точное определение понятия «сила», демонстрирует правило состава сил и исправляет определение понятия центра тяжести и эти его представления о механике использованы впоследствии Ньютоном. [80] Вторая книга, опубликованная в 1644 году, представляет собой трактат по астрономии, системе мира по Аристарху Самосскому, в которой он выдвигает идеи о вселенском притяжении, гравитационных силах, а также взаимном притяжении тел. [81] В 1637 году в связи с задачей определения площади циклоиды Роберваль вычертил и опубликовал график синусоиды – первый график тригонометрической функции, появившийся в печати. Широкую известность получил открытый Робервалем кинематический34 метод поиска скоростей метод, так называемый «кинематический метод» путем построения касательной к кривой в произвольно заданной точке; в 1640 году он опубликовал систематическое изложение данного метода и главнейших его применений. Метод содержал в себе элементы будущего дифференциального исчисления, но исходил из частных особенностей кривых и потому был недостаточно алгоритмичен. В 1647 году Роберваль, по сообщению биографов, провел первый решающий эксперимент, который доказывает существование давления и тяжести воздуха. Робервалем также был написан «Трактат по механике», который не был опубликован и до нас не дошёл; однако общее представление о содержании трактата можно получить из материалов Роберваля, включённых Мареном Мерсенном (1636) в свой компилятивный труд «Всеобщая гармония». [82] В данном трактате Роберваль осуществил систематизацию и завершение геометрической статики Стевина, причём положил в основу своего изложения статики положил два фундаментальных закона: закон равенства моментов сил и закон параллелограмма сил. Симон Стевин (1605) сформулировал правило векторного сложения сил35 только для частного случая перпендикулярных сил. [83] В общем случае Роберваль открыл правило, получив намного более чёткую формулировку, чем у Стевина, и впервые рассматривался в качестве всеобщего закона статики. Задолго до параллельных изобретений дифференциального исчисления соответственно Ньютоном и Лейбницем, Роберваль обладал мощным интеграционным инструментом. Но он в итоге потерял приоритет во многих своих методах, так как держал их для собственного использования и редко публиковал, а основная масса работ обнародована спустя 18 лет после его смерти. [84]
§53. Рене Декартом (1644) в «Первоначалах философии» были обозначены законы движения. [85] Первый из Декартовых законов утверждает, что любая простая и неделимая вещь пребывает в неизменности, если не встречается с другой, которая изменяет ее своим воздействием. Согласно второму, изначальное движение тела – движение по прямой. Третий закон добавляет, что при столкновении одного тела с другим, более сильным, первое ничего не теряет в своем движении, при столкновении же с более слабым оно теряет в своем движении ровно столько, сколько сообщает этому телу. [86] Декарт критиковал методы, которые применяли Роберваль и Пьер Ферма, а Роберваль ответил на это взаимной критикой методов, которые вводил в геометрию Декарт.
§54. Пьер Ферма (1660) обобщил законы геометрической оптики и постулировал, что в пространстве между двумя точками луч света пойдет по тому пути, вдоль которого время его прохождения минимально. [87] Он вывел, что в однородной среде скорость света величина неизменная, а наименьшее время прохождения светом дистанции между двумя точками совпадает с движением по самому короткому расстоянию, значит по прямой линии. Ранее этот принцип, рассмотренный в I веке Героном Александрийским36 для отражения света, в своем общем виде был предложен Ферма в качестве закона геометрической оптики, из которого следовали уже известные законы: прямолинейность луча света в однородной среде, законы отражения и преломления света на границе двух прозрачных сред. [88,89]
§55. В 1665 году одновременно и независимо друг от друга Роберт Гук и Франческо Мариа Гримальди высказали идею о волнообразном распространении света. Их открытия дифракции37 и интерференции38 света, а также поперечного характера световых волн легли в основу волновой теории света. [90,91] В своей работе Микрография Гук постулировал, что «свет – это не что иное, как ударная волна, которая распространяется через однотипную, однородную и прозрачную среду, и этот цвет является не чем иным, как нарушением этого света преломлением. Гук произвел открытие цветов тонких плёнок (то есть, в итоге, явления интерференции света), высказал идею о волнообразном распространении света (практически одновременно с Гюйгенсом). Гук описал цветовые явления и цветные кольца, которые он наблюдал при экспериментах с минералом москвич, раковинах устриц и другие тонких слоев, и которые также возникли, когда он нажал два куска стекла вместе. Он также объяснил, как создаются наблюдаемые цвета.
§56. Джованни Доминико Кассини (1668), поводя итог своим измерениям (1664—1666) периодов обращения Юпитера и Марса вокруг своих осей, обнаружил расхождения в своих данных, которые сначала он приписал свету с конечной скоростью: «… свету требуется некоторое время, чтобы дойти от спутника до нас, и примерно десять или одиннадцать минут, чтобы пройти расстояние, равное полудиаметру земной орбиты». [92] Однако Кассини был слишком традиционен в своих взглядах, чтобы принять свою собственную идею, и вскоре он отверг ее и стал искать другое объяснение этому несоответствию. Впоследствии данные Кассини использовались Рёмером при расчете скорости света семь лет спустя, который в своих наблюдениях Юпитера установил, что планета сплюснута у полюсов.
§57. Датский учёный Расмус Бартолин (1669) обнаружил явление двойного лучепреломления, что луч света при прохождении сквозь кристалл расщепляется на два луча (называемых теперь обыкновенным и необыкновенным), но объяснения ему дать не смог. [93] Через двадцать лет после опытов Бартолина, его открытием заинтересовался Гюйгенс, который дал объяснение явлению двойного лучепреломления на основе своей волновой теории света.
§58. Игнас-Гастон Пардис (1672) дал волновое объяснение преломлению света в противовес корпускулярной теории света Ньютона, обратившись к гипотезе Гримальди о расширяемости преломленного луча и к теории волнения Гука. [94,95] Его карты звездного неба весьма красочно показали наблюдаемый и трактуемый мир созвездий. [96]
§59. В результате своих наблюдений Солнца Джованни Кассини (1672) составил довольно точные солнечные таблицы и дал описание светила. [97] Ученый интересовался также величиной солнечного параллакса, то есть величиной угла, под которым с Солнца виден экваториальный радиус Земли. С помощью вычисленного параллакса Кассини определил расстояние от Земли до Солнца. По его расчетам это расстояние равно 146 миллионам километров (по современным данным около 149,6 миллионов километров).
§60. Роберт Гук (1674) высказал идею закона всемирного тяготения в работе «Попытка доказать движение Земли наблюдениями». [98] Он изложил взгляды, весьма близкие к тем, которые затем были развиты Ньютоном в «Началах». Приоритет Гука оспаривался Ньютоном, но, по-видимому, не в части формулировки – сила тяготения обратно пропорциональна квадрату расстояния; кроме того, Ньютон утверждал о независимом и более раннем открытии этой формулы, которую, однако, до открытия Гуком никому не сообщал. При этом первая публикация Гука о силе тяготения как о возможной причине эллиптичности орбит планет относится к 1666 году.
§61. Роберт Бойль (1674) в своем трактате по сравнению теологии и естествознания рассуждая по вопросу межзвездной части неба обратил внимание, что некоторые из современных ему эпикурейцев считают, что она пуста, за исключением тех мест, где лучи света (и, возможно, некоторые другие небесные испарения) проходят через нее; а картезианцы, напротив, думают, что она полна эфирной материи, которую некоторые сторонники их философии считают только гипотезой. [99] Он признает, что «существует столь большая диспропорция между небесами и землей, что некоторые современные люди считают, что Земля немногим лучше точки по сравнению даже с шаром солнца; а картезианцы и другие коперникианцы думают, что сам большой шар (который равен тому, что за Птолемеем называли Солнечным шаром) является просто точкой в сравнении с небесным сводом; и все наши астрономы согласны, по крайней мере, с этим: Земля – всего лишь физическая точка по сравнению со звездным небом. Как мало должно быть наших знаний, которые оставляют нас в неведении о столь многих вещах, касающихся огромных тел над нами, и проникают таким коротким путем даже в землю под нами, что, кажется, ограничиваются малой долей поверхностной части физической точки! Естественным результатом этого будет то, что, хотя то, что мы называем нашим „знанием“, может считаться большой наградой для наших умов, оно не должно раздувать их; и что то, что мы знаем о системе и природе материальных вещей, не настолько совершенно и удовлетворительно, чтобы оправдать наше презрение к открытиям духовных вещей».