Полная версия
Размышления о природе вещей и идей
Со времён Галилео Галилея укоренилось представление, что всякое движение в пространстве количественно определяется скоростью, а рассуждения о скорости имеют точный смысл только в том случае, если указано, относительно какого объекта определяется скорость движения наблюдаемого тела. Так, пассажир, сидящий в вагоне поезда, проносящегося мимо станции со скоростью сто километров в час, движется мимо станции с той же скоростью, но имеет нулевую скорость относительно вагона и всех предметов в нём находящихся. Если же на платформе того же поезда установлена пушка, стреляющая вдоль направления движения поезда, то скорость вылета снаряда из дула по отношению пушки определяется мощностью порохового заряда. Пусть скорость вылета снаряда равна тысяче километров в час, тогда его скорость относительно станции будет равна сумме скорости поезда относительно станции и скорости снаряда относительно дула пушки. Если пушка стреляет в произвольном направлении, скорости поезда и снаряда следует складывать как сумму векторов.
В простейшем случае для определения скорости движения предмета нужно иметь линейку и часы. Сложность измерения скорости света заключается в огромной величине этой скорости. Скажем, если мы имеем часы, определяющие время с точностью до десятой доли секунды, нам понадобится линейка длиной в тридцать тысяч километров, то есть конец линейки будет находиться в глубоком космосе.
Альберт Абрахам Майкельсон (1852—1931)
Американский физик и изобретатель Альберт Абрахам Майкельсон посвятил измерениям скорости света более полувека своей жизни. Главным его достижением было изобретение интерферометра, позволявшего производить измерения с невероятной для того времени точностью. За это изобретение и проведение метрологических измерений он был удостоен Нобелевской премии по физике в 1907 году. Первые измерения он произвел в 1877 году. Сложность возникла не в самих измерениях, а в их интерпретации. Первый вопрос заключался в том, относительно чего измеряется скорость света. Предполагалось, что истинно неподвижной субстанцией Вселенной является эфир – среда со столь мелкими частицами, что все остальные частицы материи проходят через неё свободно, практически не возмущая частицы эфира. Учёные того времени не слишком серьёзно относились к парадоксу: со времён Галилео Галилея физика считается наукой экспериментальной, но частицы эфира не обнаружены, и потому об их свойствах нельзя утверждать ничего определённого. Возвращаясь к описанной выше ситуации с поездом на котором установлена пушка, Майкельсону следовало учесть, что источник, для которого производятся измерения скорости света, участвует во многих движениях сразу, поэтому следует векторно складывать скорость движения света относительно эфира, скорость вращения источника относительно центра Земли, скорость его вращения относительно Солнца, скорость вращения Солнца относительно центра нашей галактики и скорость движения галактики относительно центра Вселенной. Майкельсон поступил очень просто. Предположим, сумма всех скоростей относительного движения источника света равна величине V. Тогда можно сделать ряд измерений, перемещая положение источника относительно измерительного прибора по кругу в плоскости горизонта с некоторым угловым интервалом. Тогда точки измерений на графике лягут на кривую, максимум которой соответствует совпадению направления распространения света с направлением суммарного вектора V, а минимум – направлению, противоположному направлению этого вектора. Проделанные Майкельсоном расчёты показывали, что погрешность измерения его прибором примерно на два порядка меньше величины относительной скорости V/c, где с – скорость света относительно эфира. Однако, точки измерений легли на прямую линию с точностью до погрешности измерений. В 1987 году Майкельсон совместно с Э. У. Морли значительно усовершенствовал свой прибор, однако на этот раз измеренные точки с ещё большей точностью легли на прямую линию. Получалось, как будто измеряемая скорость света не зависит от скорости движения источника, что противоречит логике рассмотренного примера с поездом и пушкой.
Практически до конца XIX века человечество не сталкивалось с изучением движения объектов со скоростями, сравнимыми со скоростью света. Лищь к концу этого века такими объектами стали катодные лучи, которые представляли собой потоки электронов, ускоряемые электрическим полем. Тогда же было экспериментально установлено, что связь между ускоряющим напряжением и скоростью электронов не является линейной. В 1892 году Хендрик Лоренц установил такую связь, которая получила название преобразования Лоренца. В его формулах ускорение, приобретаемое электроном зависит от квадрата отношения скорости электрона к скорости света. Этот эффект можно было трактовать двояким образом. С одной с тороны, можно считать, что по мере ускорения растёт масса ускоряемой частицы. С другой стороны, аналогичный эффект достигается тем, что пространство как бы сокращается в направлении движения частицы. Оба варианта представлялись логически абсурдными. Масса является фундаментальной характеристикой частицы, поэтому изменение массы как бы превращает данную частицу в другую. Однако, второй вариант ещё страннее первого, поскольку в физике твёрдо укоренились представления об абсолютных пространстве и времени. Свойства эти фундаментальных категорий заключались в неизменности характеристик пространства и времени, независимо от того, присутствуют ли в данном месте и в данное время какие-либо материальные объекты или нет.
Провозвестник новой физики Альберт Эйнштейн (1879 – 1956)
Парадокс разрешил сотрудник патентного бюро Альберт Эйнштейн, опубликовав в 1905 году в Анналах физики статью «Об электродинамике движущихся тел». Статьи более революционного содержания и представить трудно. В основу новой теории движения были положены два постулата:
– Все инерциальные системы полностью эквивалентны с точки зрения характеристик физических явлений, протекающих в них;
– Скорость света одинакова в любых инерциальных системах и является мировой константой.
Из этих постулатов немедлено следуют преобразования Лоренца, связывающие переменные пространства и времени при переходе от одной инерциальной системы к другой. Однако, Эйнштейн придаёт этим преобразованиям иной, отличный от Лоренца смысл. Никакой двойственности относительно трактовки изменения массы или сокращения расстояния у него нет. Преобразования означают, что свойства пространства и времени не являются независимыми, ибо переменные пространства и времени образуют принципиально новый, единый объект, который называется четырёхмерным вектором пространства-времени. Для этого объекта переход от одной инерциальной системы движения к другой означает поворот в четырёхмерном пространстве с сохранением длины четырёхвектора.
Справедливости ради, надо упомянуть, что представление о четырёхмерном пространстве-времени гораздо раньше было опубликовано в работе французского математика и физика-теоретика Анри Пуанкаре. Ещё в 1898 году, задолго до Эйнштейна, Пуанкаре в своей работе «Измерение времени» сформулировал общий (не только для механики) принцип относительности, а затем даже ввёл четырёхмерное пространство-время, теорию которого позднее разработал Герман Минковский. В 1905 году Пуанкаре далеко развил эти идеи в статье «О динамике электрона». Предварительный вариант статьи появился 5 июня 1905 года в Comptes Rendus, развёрнутый был закончен в июле 1905 года, опубликован в январе 1906 года, почему-то в малоизвестном итальянском математическом журнале. В этой итоговой статье снова и чётко формулируется всеобщий принцип относительности для всех физических явлений (в частности, электромагнитных, механических и также гравитационных), с преобразованиями Лоренца, как единственно возможными преобразованиями координат, сохраняющими одинаковую для всех систем отсчёта запись физических уравнений. Пуанкаре нашёл выражение для четырёхмерного интервала как инварианта преобразований Лоренца: четырёхмерную формулировку принципа наименьшего действия. Однако, в отличие от Пуанкаре, Эйнштейн сделал решительный вывод: нелепо привлекать понятие эфира только для того, чтобы доказать невозможность его наблюдения. Он полностью упразднил как понятие эфира, которое продолжал использовать Пуанкаре, так и опирающиеся на гипотезу эфира понятия абсолютного движения и абсолютного времени. Именно эта теория, по предложению Макса Планка, получила название теории относительности. Однако это было только начало, поскольку данная теория, как и кинематика Галилея, рассматривала лишь частный вид движения, а именно – инерциальное движение, поэтому теория Эйнштейна получила название специальной теории относительности (СТО).
Следующим шагом стало создание Альбертом Эйнштейном общей теории относительности (ОТО) которая включила в рассмотрение действие гравитационных полей. Недостаток ньютоновской модели тяготения к тому времени проявился в том, что эта модель не была релятивистски инвариантной, то есть не удовлетворяла преобразованиям Лоренца. Новизна идей Эйнштейна заключалась в том, что материальным носителем тяготения является само четырёхмерное неевклидово пространство-время (псевдориманово многообразие), которое характеризуется метрикой и кривизной. Распространение возмущений гравитации, то есть изменений метрики при движении тяготеющих масс, происходит с конечной скоростью, в отличие от мнения Ньютона, полагавшего, что силы гравитации распространяются мгновенно. Дальнодействие с этого момента исчезает из физики. Ньютоновская теория тяготения по отношению к СТО остаётся справедливой лишь для относительно малых по космическим масштабам масс, когда нелинейные эффекты исчезают и вклады отдельных тяготеющих тел определяются простым суммированием.
Математическое оформление этих идей было достаточно трудоёмким и заняло несколько лет (1907 1915). Эйнштейну пришлось овладеть тензорным анализом и создать его четырёхмерное псевдориманово обобщение; в этом ему помогли консультации и совместная работа сначала с Марселем Гроссманом, ставшим соавтором первых статей Эйнштейна по тензорной теории гравитации, а затем и с «королём математиков» тех лет, Давидом Гильбертом. В 1915 году уравнения поля общей теории относительности Эйнштейна (ОТО), обобщающие ньютоновские, были опубликованы почти одновременно в статьях Эйнштейна и Гильберта.
Марсель Гроссманн (1878—1936)
Другая, не менее революционная теория ХХ века была связана с построением модели атома. Для того, чтобы понять суть проблемы, имеет смысл просмотреть её истоки. Принято считать, что первым автором атомистической гипотезы является древнегреческий философ Демокрит Абдерский (ок. 460 – ок. 370 до н.э.), один из основателей философии материализма. Главным достижением философии Демокрита считается развитие им учения Левкиппа об «атоме» – неделимой частице вещества, обладающей истинным бытием, не разрушающейся и не возникающей (атомистический материализм). Он описал мир как систему атомов, движущихся в пустоте, отвергая бесконечную делимость материи, постулируя не только бесконечность числа атомов во Вселенной, но и бесконечность их форм и размеров. Атомы, согласно этой теории, вечно движутся в пустом пространстве (Великой Пустоте, как говорил Демокрит) хаотично, сталкиваются и вследствие соответствия форм, размеров, положений и порядков либо сцепляются, либо разлетаются. Образовавшиеся соединения держатся вместе и таким образом производят возникновение сложных тел. Само же движение – свойство, естественно присущее атомам. Тела – это комбинации атомов. Разнообразие тел обусловлено как различием слагающих их атомов, так и различием порядка сборки, как из одних и тех же букв слагаются разные слова. Атомы не могут соприкасаться, поскольку всё, что не имеет внутри себя пустоты, является неделимым, то есть единым атомом. Следовательно, между двумя атомами всегда есть хотя бы маленькие промежутки пустоты, так что даже в обычных телах есть пустота. Отсюда следует также, что при сближении атомов на очень маленькие расстояния между ними начинают действовать силы отталкивания. Вместе с тем, между атомами возможно и взаимное притяжение по принципу «подобное притягивается подобным».
Первый «атомист» планеты Демокрит Абдерский (ок. 480 – 370 до н.э.)
Форма атома определяет его свойства. Так, атомы мыла округлые и скользкие, атомы огня колючие, атомы воды текучие. Но тоньше всего плоские и гибкие атомы души, поэтому они могут проникать даже в самые малые щели и отверстия. Для возможности сцепления на поверхности каждого атома существуют петли и крючочки. Если два атома достаточно приблизились друг к другу, они могут зацепиться крючочками за петли соседнего атома. Однако, не всякие пары атомов способны к сцеплению, а лишь те, размеры петель и крючочков которых соответствуют друг другу. Приложение достаточного усилия способно вновь расцепить атомы. От постоянных сцеплений и расцеплений крючочки тупятся или даже обламываются. Именно поэтому всякая новая вещь приятна на вид и прочна, но со временем всё сущее старится, портится и превращается в хлам.
Основным методологическим принципом атомистов был принцип изономии (буквальный перевод с греческого: равенство всех перед законом), который формулируется следующим образом: если то или иное явление возможно и не противоречит законам природы, то необходимо допустить, что в беспредельном времени и на беспредельном пространстве оно либо когда-то уже имело место, либо когда-нибудь наступит: в бесконечности нет границы между возможностью и существованием. Этот принцип ещё называют принципом отсутствия достаточного основания: нет никакого основания для того, чтобы какое-то тело или явление существовало скорее в такой, чем в какой-либо другой форме. Отсюда следует, в частности, что если какое-то явление в принципе может происходить в различных видах, то все эти виды существуют в действительности. Демокрит делал несколько важных выводов из принципа изономии:
1) существуют атомы любых форм и размеров (в том числе размером с целый мир);
2) все направления и все точки в Великой Пустоте равноправны;
3) атомы двигаются в Великой Пустоте в любых направлениях с любыми скоростями.
Последнее положение очень важно для теории Демокрита. По существу, из него следует, что движение само по себе не нуждается в объяснении, причину нужно искать только для изменения движения. В этом отношении учение Демокрита о причинах движения предвосхитило идеи Ньютона на два тясячелетия.
Наиболее значимой работой Демокрита следует полагать «Великий мирострой», космологическую работу, охватывавшую практически все доступные в то время области знания. Кроме того, на основе списков Диогена Лаэрция Демокриту приписывают авторство таких работ, как «О душевном расположении мудреца», «О добродетели», «О планетах», «О чувствах», «О разнице форм», «О вкусах», «О цветах», «Об уме», «О логике или канонах», «Причины небесных явлений», «Причины воздушных явлений», «Причины наземных явлений», «Причины огня и огненных явлений», «Причины звуков», «Причины семян, растений и плодов», «Причины живых существ», «О соприкосновении круга и шара», «О геометрии», «Об иррациональных линиях и телах», «Числа», «Проекции», «Большой год», «Описание неба», «Описание земли», «Описание полюсов», «Описание лучей», «О ритмах и гармонии», «О поэзии», «О красоте стихов», «О пении», «Врачебная наука», «О диете», «О живописи», «Земледелие», «О военном строе» и др.
Лишь в XIX веке атомистическая гипотеза получила первое экспериментальное подтверждение в опытах с газами английского физика и химика Джона Дальтона. По существу, абсолютно все сведения об атомах, описанные Демокритом, оказались буквально «высосанными из пальца» великого фантазёра, за исключением самой идеи о том, что все материальные тела состоят из мельчайших, невидимых глазу, неделимых частиц, называемых атомами. ХХ-й век опроверг и эту идею, продемонстрировав, что в природе имеются атомы, способные распадаться самостоятельно, а другие атомы могут быть расщеплены под искусственным воздействием на них более мелких субатомных частиц.
В 1907 году, когда основной источник электричества, отрицательно заряженный электрон уже был открыт, Джозеф Джон Томсон предложил три правдоподобных варианта возможного строения атома, объясняющие его электронейтральность:
– Каждый отрицательно заряженный электрон спарен с гипотетической положительно заряженной частицей, и эта пара блуждает внутри атома.
– Отрицательно заряженные электроны вращаются вокруг сосредоточенной в центре атома области положительного заряда, равного по абсолютной величине суммарному заряду всех электронов атома.
– Электроны погружены в сферическое облако положительного заряда с равной везде плотностью заряда внутри этой сферы, где могут свободно двигаться.
Модели атома от Демокрита до наших дней
Томсон в своей статье предположил, что наиболее вероятно строение атома по третьей модели, которая получила название «пудинг с изюмом». В этой же статье Томсон отвергает ранее предложенную им «вихревую» модель строения атома. В модели Томсона электроны могли свободно вращаться по кольцевым орбитам, которые стабилизировались взаимодействиями между электронами, а линейчатые спектры объясняли разницей энергий при движении по разным кольцевым орбитам. Томсон позднее пытался объяснить с помощью своей модели яркие спектральные линии некоторых химических элементов, но не особо в этом преуспел. Тем не менее, модель Томсона (также как подобная модель сатурнианских колец для электронов атомов, которую выдвинул тоже в 1904 году Нагаока, по аналогии с моделью колец Сатурна Джеймса Клерка Максвелла) стала ранним предвестником более поздней и более успешной модели Бора, представляющей атом как подобие Солнечной системы.
Автор планетарной модели атома Эрнест Резерфорд (1871 – 1937)
Модель атома Томсона 1904 года была опровергнута в эксперименте по рассеянию альфа-частиц на золотой фольге в 1909 году, который был проанализирован Эрнестом Резерфордом в 1911 году, предположившим, что в атоме есть очень малое ядро, содержащее очень большой положительный заряд (в случае золота, достаточный, чтобы компенсировать заряд около 100 электронов), что привело к созданию планетарной модели атома Резерфорда. Сама идея планетарной модели основывалась на том, что закон всемирного тяготения Ньютона, объясняющий эллиптические орбиты планет солнечной системы действием гравитационных сил, и закон Кулона, описывающий силы притяжения-отталкивания зарядов, имеют один и тот же вид, только в законе Кулона произведение масс тяготеющих тел заменено на произведение зарядов, а обратная квадратичная зависимость сил от расстояния остаётся той же самой. Значит, форма орбит должна оставаться той же самой у вращающихся планет и электронов. Далеко не часто упоминают, что в своей публикации Резерфорд упомянул, что существенным недостатком планетарной модели является её неустойчивость.
В самом деле, в соответствии с законами классической физики, электрон, движущийся по криволинейной траектории, совершает работу, равную интегралу от действующей на него со стороны положительно заряженного ядра кулоновской силы вдоль траектории его движения. При этом он теряет кинетическую энергию своего движения, то есть теряет скорость. Согласно третьему закону Ньютона, форма орбиты определяется равенством силы кулоновского притяжения и центробежной силы, которая зависит от скорости движения и текущего радиуса орбиты. Потеря энергии приводит к уменьшению радиуса орбиты, поэтому через определённое число витков любой электрон должен упасть на ядро атома. При этом все сложные вещества распадутся на элементы, поскольку химическая связь элементов устанавливается путём взаимодействия электронных оболочек атомов. Терять энергию электрон может, лишь излучая фотоны. Свойства такого излучения, называемого синхротронным, хорошо изучено при работе кольцевых ускорителей в канале которых также движутся электроны. В этих ускорителях потери энергии частицами восполняются приложением ускоряющих высокочастотных электрических полей в зазорах резонаторов, в противном случае все электроны очень скоро оседают на стенках канала ускорителя. Подобгые расчёты для вращающегося в атоме электрона проделываются элементарно, если считать траекторию приблизительно круговой. Эти расчёты показывают, что любой электрон, независимо от начального радиуса орбиты, упадёт на ядро за время, меньшее одной микросекунды. Поскольку ничего подобного в природе не происходит, и атомы более чем стабильны, остаётся предположить, что устойчивость атома можно объяснить лишь тем, что поведение его составляющих описывается какими-то иными законами природы. Намеком на это служил накопленный к тому времени огромный экспериментальный материал по спектрам излучения-поглощения атомов. Главное противоречие планетарной модели атома с данными по спектрам заключалось в том, что по законам классической физики падение электрона на ядро атома представляет собой непрерывный процесс, в котором радиус и частота вращения электрона меняются плавно, поэтому спектр излучения должен быть непрерывным, содержащим все частоты внутри диапазона изменения частоты его вращения, в то время как экспериментальные данные показывали дискретный спектр с набором узких линий, однозначно характеризующими атом каждого типа.
Объём данных по спектрам атомов был столь велик, что неоднократно предпринимались попытки подобрать простые алгебраические формулы для описания частот (или длин волн) для спектра каждого атома. Достаточно быстро были найдены такие формулы, которые позволяли классифицировать линии, объядиняя их в серии, описываемые изменением целого числа, представляющего каждую серию. Так появились серии Бальмера, Лаймана, Пашена, Брэккета, Пфунда, Хэмфри, Хансена-Стронга. Однако, объяснить причины формирования линейчатых спектров не удавалось. Гениальным провидцем, который догадался, что для объяснения столь странного поведения атомов следует привлечь новые принципы, оказался датский физик Нильс Бор (1885—1962). Подсказкой для него явились работы Макса Планка по излучению «абсолютно черного» тела и Альберта Эйнштейна по теории фотоэффекта. Из этих работ следовало, что при определённых условиях обмен энергией осуществляется элементарными порциями энергии, которые Планк назвал квантами. Величина кванта пропорциональна частоте излучения, а коэффициент пропорциональности был назван постоянной Планка ħ. Эти работы позволили определить закономерности, наблюдаемые в экспериментах, но не давали объяснения причин, по которым в природе существуют не только мельчайшие частицы, называемые атомами, но и мальчайшие, неделимые порции энергии – кванты.
Отец квантовой механики Нильс Бор (1895 – 1962)
В марте 1913 года Бор послал предварительный вариант статьи Резерфорду, а в апреле съездил на несколько дней в Манчестер для обсуждения своей теории. Итогом проведённой работы стали три части революционной статьи «О строении атомов и молекул», опубликованные в журнале «Philosophical Magazine» в июле, октябре и декабре 1913 года и содержащие квантовую теорию водородоподобного атома. В теории Бора можно выделить два основных компонента: общие утверждения (постулаты) о поведении атомных систем, сохраняющие своё значение и всесторонне проверенные, и конкретная модель строения атома, представляющая в наши дни лишь исторический интерес. Постулаты Бора содержат предположения о существовании стационарных состояний и об излучательных переходах между ними в соответствии с представлениями Планка о квантовании энергии вещества. Модельная теория атома Бора исходит из предположения о возможности описания движения электронов в атоме, находящемся в стационарном состоянии, на основе классической физики, на которое накладываются дополнительные квантовые условия (например, квантование углового момента электрона).
В 1918 году в статье «О квантовой теории линейчатых спектров» Бор сформулировал количественно так называемый принцип соответствия, связывающий квантовую теорию с классической физикой: …«принцип соответствия», согласно которому наличие переходов между стационарными состояниями, сопровождающихся излучением, связано с гармоническими компонентами колебания в движении атома, определяющими в классической теории свойства излучения, испускаемого вследствие движения частицы. Таким образом, по этому принципу, предполагается, что всякий процесс перехода между двумя стационарными состояниями связан с соответствующей гармонической компонентой так, что вероятность наличия перехода зависит от амплитуды колебания, поляризация же излучения обусловлена более детальными свойствами колебания так же, как интенсивность и поляризация излучения в системе волн, испускаемых атомом по классической теории вследствие наличия указанных компонент колебания, определяется амплитудой и другими свойствами последних.