Полная версия
Бесконечная сила. Как математический анализ раскрывает тайны вселенной
Стивен Строгац
Бесконечная сила. Как математический анализ раскрывает тайны вселенной
Научный редактор Игорь Красиков
Издано с разрешения Steven Strogatz, c/o Brockman, Inc
Все права защищены.
Никакая часть данной книги не может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских прав.
Copyright © 2019 by Steven Strogatz. All rights reserved.
© Издание на русском языке, перевод, оформление. ООО «Манн, Иванов и Фербер», 2021
* * *Введение
Без математического анализа[1] у нас не было бы ни мобильных телефонов, ни компьютеров, ни микроволновых печей. Ни радио, ни телевидения. Ни УЗИ для будущих мам, ни GPS для заблудившихся путешественников. Мы не расщепили бы атом, не раскрыли бы геном человека и не отправили бы астронавтов на Луну. Возможно, у нас даже не было бы Декларации прав человека.
Любопытно, что историю мира этот загадочный раздел математики изменил навсегда. Как же могло так случиться, что некая теория, изначально занимавшаяся малыми изменениями, в итоге изменила цивилизацию коренным образом?
Суть ответа кроется в замечании, которое физик Ричард Фейнман сделал во время обсуждения Манхэттенского проекта с писателем Германом Воуком. Воук собирал материал для крупного романа о Второй мировой войне, который планировал написать, и отправился в Калтех[2], чтобы побеседовать с физиками, работавшими над созданием бомбы, а Фейнман был одним из них. Когда они прощались после интервью, Фейнман спросил Воука, знает ли тот матанализ. Воук признался, что нет. «Вам следовало бы ему поучиться, – сказал Фейнман. – Это язык, на котором говорит Бог»[3].
Действительно, Вселенная – глубоко математическая сущность[4], хотя причин этого явления никто не понимает. Возможно, так устроил Бог. А может, это единственный способ нашего в ней существования, ибо нематематические вселенные не могут создать жизнь, достаточно разумную для того, чтобы задать такой вопрос. В любом случае то, что наша Вселенная подчиняется законам природы, которые всегда выражены на языке анализа в виде предложений, называемых дифференциальными уравнениями, – весьма таинственный и изумительный факт. Такие уравнения описывают разницу между чем-то прямо сейчас и той же величиной мгновение спустя или между чем-то прямо здесь и бесконечно близко. Детали отличаются в зависимости от конкретной области природы, но структура законов всегда одна и та же. Иначе говоря, все выглядит так, словно у Вселенной существует какой-то код, некая операционная система, которая оживляет все в конкретный момент в конкретном месте. Анализ подключается к этому порядку и выражает его.
Исаак Ньютон первым увидел эту тайну Вселенной. Он обнаружил, что орбиты планет, ритм приливов и отливов и траектории пушечных ядер можно описать, объяснить и предсказать с помощью небольшого набора дифференциальных уравнений. Сегодня мы называем их законами движения и гравитации Ньютона. Мы обнаружили, что эта закономерность сохраняется всякий раз, когда мы открываем какую-то новую часть Вселенной. От старых стихий – земли, воздуха, огня и воды, до новейших электронов, кварков, черных дыр и суперструн – все во Вселенной подчиняется правилам дифференциальных уравнений. Бьюсь об заклад, что именно это имел в виду Фейнман, когда говорил, что на этом языке разговаривает Бог. Если что-то и заслуживает называться тайной Вселенной, то это дифференциальное исчисление.
Случайно открыв этот странный язык, сначала в области геометрии, а потом в коде Вселенной, затем научившись бегло разговаривать на нем и расшифровывать его идиомы и тонкости и в конце концов используя его способность к прогнозированию, люди стали применять анализ, чтобы переделать мир.
Это центральный вопрос нашей книги.
А коль это так, то ответ на «главный вопрос жизни, Вселенной и всего такого»[5] – вовсе не 42, да простят меня фанаты Дугласа Адамса и его книги «Автостопом по галактике»[6]. Тем не менее «Думатель» был на верном пути: тайна Вселенной действительно «математична».
Анализ для всехЗамечание Фейнмана о языке Бога поднимает массу глубоких вопросов. Что такое анализ? Как люди поняли, что на этом языке говорит Бог (или, если вам так больше нравится, что на нем работает Вселенная)? Что такое дифференциальные уравнения и что они сделали для мира, причем не только во времена Ньютона, но и в наши дни? И наконец, как доходчиво рассказать эти истории и идеи, чтобы их с удовольствием восприняли такие доброжелательные читатели, как Герман Воук, – вдумчивые, любопытные, образованные, но имеющие смутное представление о высшей математике?
В эпилоге рассказа о встрече с Фейнманом Воук писал, что в течение четырнадцати лет даже не пытался заняться анализом. Его роман разросся до двух больших романов – «Ветры войны» и «Война и память», примерно по тысяче страниц каждый. После окончания работы над ними он попытался учиться по книгам с названиями типа «Анализ в легком изложении», но безуспешно. Он копался в нескольких учебниках в надежде, как он выразился, «найти то, что помогло бы математическому невежде вроде меня, который в колледже занимался гуманитарными науками, то есть литературой и философией, в подростковом поиске смысла существования; при этом я лишь знал, что анализ (о котором я слышал как о скучной и бесполезной вещи) – это язык, на котором говорит Бог»[7]. Однако учебники оказались неприступными, и тогда он нанял израильского преподавателя математики, чтобы подучиться анализу и подтянуть разговорный иврит, но обе надежды опять не оправдались. Вконец отчаявшись, он стал слушать курс анализа в старших классах школы, но почувствовал, что сильно отстал, и сдался через пару месяцев. Когда он уходил, дети хлопали. Он сказал, что это было похоже на сочувствующие аплодисменты после провального выступления на сцене.
Я написал «Бесконечные силы», пытаясь сделать величайшие идеи матанализа доступными каждому. Чтобы узнать об этих эпохальных событиях в истории, вам незачем повторять печальный опыт Германа Воука. Анализ – одно из самых вдохновляющих достижений человечества, и чтобы оценить его, вовсе не обязательно им заниматься – как необязательно уметь готовить изысканные блюда, чтобы насладиться такой едой. Я постараюсь объяснить все, что нам надо, с помощью картинок, метафор и анекдотов, а также покажу вам некоторые самые красивые из когда-либо созданных уравнений и доказательств, ведь разве можно посетить галерею, не увидев ее шедевров? Что касается Германа Воука, то на момент написания книги ему было 103 года[8]. Я не знаю, выучил ли он анализ, но если еще нет, то она для вас, мистер Воук!
Мир согласно анализуКак вам уже, должно быть, понятно, я собираюсь изложить историю и значение анализа с точки зрения прикладного математика. Историк математики рассказал бы все иначе[9], собственно, как и чистый математик. Что восхищает меня как прикладника – так это наличие связи между реальным миром вокруг нас и идеальным миром в наших головах. Внешние явления обусловливают вопросы, которые мы задаем, и наоборот, математика, которую мы воображаем, иногда предсказывает то, что произойдет в реальности. Когда такое случается, эффект просто поражает.
Заниматься прикладной математикой[10] – значит смотреть вовне и быть «интеллектуально неразборчивым». Для специалистов в этой области математика не чистый и герметичный мир теорем и доказательств[11], отражающих самих себя. Мы охватываем все виды предметов: философию, политику, историю, медицину и так далее. Именно такую историю я и собираюсь вам рассказать – мир, соответствующий анализу.
Это гораздо более широкий взгляд на анализ. Он включает множество родственных дисциплин, как смежных, так и в рамках математики. Поскольку такой широкий взгляд непривычен, я хочу убедиться, что он не вызывает никакой путаницы. Например, когда я говорил, что без анализа у нас не было бы компьютеров, мобильных телефонов и так далее, я вовсе не имел в виду, что именно математика сама по себе создала все эти чудеса. Отнюдь нет. Наука и технология были важными партнерами – возможно, главными звездами шоу. Я просто хочу сказать, что анализ также сыграл не последнюю роль (пусть часто и вспомогательную) в том, чтобы мир стал таким, каким мы его знаем.
Возьмем историю беспроводной связи. Все началось с открытия законов электричества и магнетизма[12] такими учеными, как Майкл Фарадей и Андре-Мари Ампер. Без их наблюдений и размышлений важнейшие факты о магнитах, электрическом токе и их невидимых силовых полях остались бы неизвестными и никогда бы не появилась беспроводная связь. Очевидно, что в этой области знаний нельзя было обойтись без экспериментальной физики, но и анализ был совершенно необходим. В 1860-х годах шотландский математик Джеймс Максвелл выразил экспериментальные законы электричества и магнетизма в символьной форме, которую можно было изучать методами математического анализа. После некоторых манипуляций появилось уравнение, которое не имело смысла. Судя по всему, в физике чего-то не хватало. Максвелл подозревал, что виноват закон Ампера, и попытался внести исправления, добавив в уравнение новый член – гипотетический ток, который мог бы разрешить противоречие, а затем снова применил анализ. На этот раз получился разумный результат – простое и элегантное волновое уравнение[13], очень похожее на уравнение, описывающее распространение ряби в пруду. Разница была в том, что результат Максвелла давал новый вид волн, где электрические и магнитные поля вместе исполняли па-де-де. Изменяющееся электрическое поле порождает изменяющееся магнитное поле, которое, в свою очередь, снова порождает изменяющееся электрическое поле, и так далее – поля влияют друг на друга и распространяются вместе в виде энергетической волны. Вычислив скорость этой волны, Максвелл обнаружил – и это был один из величайших моментов в истории науки, – что она распространяется со скоростью света. Таким образом, с помощью анализа он не только предсказал существование электромагнитных волн, но и решил вековую загадку природы света. Он пришел к выводу, что свет – это электромагнитная волна.
Предсказания Максвелла об электромагнитных волнах побудили Генриха Герца провести в 1887 году эксперимент, который подтвердил их существование. Восемь лет спустя Александр Попов продемонстрировал первую в мире систему радиосвязи, а еще пару лет спустя это сделал и Никола Тесла. Еще через пять лет Гульельмо Маркони передал первые беспроводные сообщения через Атлантику. Вскоре появилось телевидение, мобильные телефоны и все остальное.
Ясно, что анализ не смог бы привести к этому в одиночку, но так же ясно, что без него ничего бы этого не произошло. Или, если точнее, могло бы произойти, но гораздо позже.
Анализ – больше, чем языкИстория Максвелла иллюстрирует тему, с которой мы встретимся еще не раз. Часто говорят, что математика – это язык науки. В этом есть значительная доля правды. В случае электромагнитных волн первым ключевым шагом Максвелла стало преобразование экспериментально открытых законов в уравнения, написанные на языке анализа.
Однако аналогия с языком неполна. Анализ, как и другие области математики, – нечто гораздо большее, чем просто язык. Это невероятно мощная система мышления, позволяющая нам преобразовывать одно уравнение в другое, выполняя различные символьные операции, подчиняющиеся определенным правилам. Эти правила коренятся в логике, так что, даже если кажется, что мы просто перетасовываем символы, на самом деле мы выстраиваем длинные цепочки логических рассуждений. Перемещение символов – это полезные сокращения, удобный способ строить доказательства, слишком сложные, чтобы удерживать их в голове.
Если нам повезет и мы будем достаточно умелыми – то есть правильно преобразуем уравнения, – то можем получить скрытые доселе следствия. Математику этот процесс кажется почти осязаемым. Словно мы манипулируем уравнениями, массируем их, пытаясь расслабить до такой степени, чтобы они выдали свои секреты. Мы хотим, чтобы они открылись и поговорили с нами.
Здесь требуется творческий подход, потому что часто неясно, какие манипуляции выполнять. У Максвелла было бесчисленное количество способов преобразовать его уравнения; с логической точки зрения приемлемы были все, но новый интересный научный результат давали лишь некоторые. Учитывая то, что он даже не знал, что ищет, он мог легко получить от уравнений всего лишь бессвязное бормотание (или его символьный эквивалент). К счастью, уравнения раскрыли свои секреты.
В результате правильного подхода волновое уравнение не осталось абстракцией. В этот момент лингвистическая функция матанализа снова взяла верх. Когда Максвелл перевел абстрактные символы обратно в реальность, они предсказали, что электричество и магнетизм взаимодействуют, создавая электромагнитные волны, распространяющиеся со скоростью света. Через несколько десятилетий это открытие изменило мир.
Непостижимо эффективно
Тот факт, что анализ может так хорошо моделировать природу, даже несколько пугает, учитывая, насколько различны эти две сферы. Анализ – воображаемое царство символов и логики; природа – реальное царство сил и явлений. Но каким-то образом, если переводить реальность в символы достаточно искусно, с помощью логики анализа можно использовать одну истину реального мира для порождения другой. Истина на входе, истина на выходе[14]. Начните с чего-то эмпирически истинного и выраженого в символах (как Максвелл с законами электричества и магнетизма), примените верные логические действия, и получится другая эмпирическая истина, возможно, новая – какой-то ранее неизвестный факт о Вселенной (подобно существованию электромагнитных волн). Таким образом анализ позволяет нам заглядывать в будущее и предсказывать неизвестное. Именно это делает его столь мощным инструментом для науки и технологий.
Но почему же Вселенная должна уважать хоть какую-нибудь логику, не говоря уже о той, которую можем использовать мы, ничтожные люди? Именно этому удивлялся Эйнштейн, когда писал: «Вечная тайна мира заключается в его постижимости»[15]. Именно это имел в виду американский физик Юджин Вигнер в своем эссе «Непостижимая эффективность математики в естественных науках»[16], когда писал: «Математический язык удивительно хорошо приспособлен для формулировки физических законов, это чудесный дар, который мы не понимаем и которого не заслуживаем»[17].
Это чувство благоговения восходит к истории математики. По легенде, Пифагор[18] ощутил его примерно в 550 году до нашей эры, когда вместе с учениками обнаружил, что музыка регулируется отношениями целых чисел. Например, представьте, что вы защипнули гитарную струну. Когда струна вибрирует, она издает определенную ноту. Поставьте палец левой руки точно на половине длины струны и снова защипните ее. Теперь колеблющаяся часть струны вдвое короче (отношение 1 к 2), и струна звучит ровно на октаву выше, чем исходная нота (это расстояние от одной ноты «до» до следующей «до» в интервале до-ре-ми-фа-соль-ля-си-до). Если сократить струну на 2/3 исходной длины, то она будет звучать на квинту выше (интервал от «до» до «соль»; вспомните первые две ноты из темы «Звездных войн»). Если же вибрирующая часть составляет 3/4 исходной длины, то звук выше на кварту (интервал между первыми двумя нотами свадебного марша «Вот идет невеста»[19]). Древнегреческие музыканты знали о таких музыкальных интервалах, как октава, кварта и квинта, и считали их красивыми. Столь неожиданная связь между музыкой (гармонией реального мира) и числами (гармонией воображаемого мира) привела пифагорейцев[20] к мистической вере в то, что всё есть число. Считается, что они даже верили в то, что планеты на своих орбитах издают музыку – музыку сфер.
С тех пор многие из величайших математиков и других ученых заболели пифагорейской лихорадкой. Страдал ею астроном Иоганн Кеплер. И физик Поль Дирак. Это побуждало их мечтать, искать и стремиться к гармонии Вселенной и в конце концов привело к открытиям, которые изменили мир.
Принцип бесконечности
Чтобы помочь вам понять, куда мы движемся, позвольте мне сказать несколько слов о том, что такое анализ, чего он (образно говоря) хочет и чем отличается от других областей математики. К счастью, всю эту тему пронизывает одна значимая красивая идея. Как только мы ее осознаем, вся конструкция анализа сложится в единую картину, превратившись в вариации на одну общую тему.
Увы, большинство курсов анализа хоронят эту тему под лавиной формул, процедур и вычислительных ухищрений. Если подумать, то я никогда не сталкивался с тем, чтобы кто-то ее подробно объяснял, хотя это часть культуры анализа и каждому специалисту она, естественно, известна. Давайте назовем это «принципом бесконечности». Он будет направлять нас в нашем путешествии точно так же, как направлял развитие самого анализа – и концептуально, и исторически. Я испытываю искушение сформулировать его прямо сейчас, хотя пока это будет звучать как тарабарщина. Вам будет проще это оценить, если мы станем продвигаться медленно, спрашивая, чего хочет анализ… и как он получает то, что хочет.
Если коротко, то анализ хочет сделать сложные задачи проще. Он буквально одержим простотой. Это может показаться вам абсурдным, учитывая, что у анализа репутация сложного метода и что некоторые лучшие учебники по нему превышают тысячу страниц и весят, как кирпич. Но давайте не будем выносить резких суждений. Анализ ничего не может поделать с тем, как выглядит, и громоздкости ему не избежать. Он кажется сложным, потому что старается решать сложные задачи. И он действительно решил ряд самых трудных и важных задач, с которыми когда-либо сталкивался наш вид.
Анализ добивается успеха, разделяя запутанные задачи на более мелкие составляющие. Конечно, такая стратегия не уникальна. Все хорошие специалисты вам подтвердят, что сложные задачи становятся проще при разбиении на части. Поистине радикальный и отличительный ход анализа состоит в том, что он доводит эту стратегию «разделяй и властвуй» до крайнего предела – бесконечности. Вместо того чтобы разрезать большую задачу на несколько маленьких, анализ без устали режет и режет ее, пока не измельчит буквально в порошок, до бесконечного множества крохотных частей. Затем анализ решает исходную задачу для всех этих мелких частей, что обычно гораздо проще, чем в случае изначальной гигантской задачи. На следующем этапе главное – свести все полученные крошечные ответы воедино. Как правило, это довольно трудно, но все же не так сложно, как в исходной задаче.
Таким образом, анализ действует в два шага: разбиение и восстановление. С математической точки зрения первый всегда включает бесконечно малое вычитание, используемое для оценивания разницы между частями. Соответственно, эта часть предмета называется дифференциальным исчислением[21]. Второй шаг – процесс сборки – всегда включает бесконечное сложение, объединяющее части обратно в единое целое. Эта часть предмета именуется интегральным исчислением[22].
Такая стратегия подойдет для всего, что можно представить в виде бесконечного нарезания. Такие бесконечно делимые непрерывные объекты называют континуумами, от латинского глагола continere, образованного от приставки con- «с, вместе» и слова tenere «держать». Подумайте об окружности, стальной балке подвесного моста, миске супа, остывающего на кухонном столе, параболической траектории летящего копья или продолжительности вашей жизни. Форма, объект, жидкость, движение, временной интервал – все это льет воду на мельницу анализа и все это непрерывно или почти непрерывно.
Обратите внимание на определенный акт творческой фантазии. В действительности суп и сталь не непрерывны. В масштабах обычной жизни, возможно, они и кажутся таковыми, но на уровне атомов или суперструн – нет. Анализ игнорирует неудобства, создаваемые атомами и прочими неразделимыми объектами, не потому, что их не существует, а потому, что полезно представить, что их нет. Как мы увидим, анализу присуща склонность к полезным выдумкам.
Говоря в целом, те виды сущностей, которые анализ моделирует континуумами, включают практически все, что можно представить. Ученые использовали анализ для описания того, как мяч непрерывно катится по наклонной поверхности, как луч солнца проходит сквозь воду, как непрерывный поток воздуха вокруг крыла удерживает в полете колибри или самолет и как концентрация частиц вируса ВИЧ в крови пациента непрерывно снижается в течение нескольких дней после начала комбинированного лечения. Во всех случаях стратегия одна и та же: разделить сложную непрерывную задачу на бесконечное множество более простых частей, решить их по отдельности, а затем соединить опять.
Теперь мы наконец готовы изложить главную идею.
Принцип бесконечности
Чтобы пролить свет на любые непрерывные формы, объекты, движения, процессы или явления – какими бы дикими или сложными они ни казались, – переосмыслите их как бесконечный набор более простых частей, проанализируйте, а затем сложите полученные результаты, чтобы понять исходное целое.
Голем бесконечности
Единственная неприятность во всем этом – необходимость справляться с бесконечностью. И это проще сказать, чем сделать. Хотя тщательно контролируемое применение бесконечности – секрет анализа и источник его колоссальной предсказательной силы, одновременно это и его самая большая головная боль. Подобно чудовищу Франкенштейна или голему из еврейской мифологии, бесконечность склонна ускользать из-под контроля хозяина. Как и в любой истории о гордыне, монстр неизбежно обращается против своего создателя.
Создатели анализа осознавали такую опасность, но все же считали, что без бесконечности не обойтись. Конечно, время от времени чудовище приходило в бешенство, оставляя за собой парадоксы, путаницу и философский хаос. Однако после каждого такого случая математикам всегда удавалось усмирить монстра, рационализировать его поведение и вернуть к работе. В итоге все всегда заканчивалось хорошо. Анализ давал правильные ответы, даже когда его создатели не могли объяснить, почему. Желание обуздать бесконечность и использовать ее силу – это та нить, которая проходит через всю 25-вековую историю матанализа.
Если учесть, что математика обычно изображается точной и безупречно рациональной, все эти разговоры о желаниях и заблуждениях могут показаться неуместными. Она рациональна, но не всегда изначально. Творение интуитивно, понимание приходит позже. В истории анализа логика всегда отставала от интуиции чаще, чем в других областях математики. И это заставляет чувствовать, что эта тема особенно человечна и дружелюбна, а ее гении больше похожи на нас.
Кривые, движение и изменениеПринцип бесконечности организует рассказ об анализе вокруг какой-то методологической темы. Но анализ – это не только методология, но и загадки. Его развитию особенно способствовали три: загадка кривых, загадка движения и загадка изменения. Плодотворность их изучения доказала ценность чистого любопытства.
Задачи о кривых, движении и изменении на первый взгляд могут показаться неважными, а может, даже безнадежно заумными. Но они затрагивают настолько глубокие концептуальные вопросы, а математика так глубоко вплетена в ткань Вселенной, что их решение имело далеко идущие последствия для хода цивилизации и нашей повседневной жизни. Как мы увидим в следующих главах, мы пожинаем плоды этих исследований всякий раз, когда слушаем музыку в своих телефонах, делаем покупки в магазинах с помощью лазерных сканеров или находим дорогу домой благодаря GPS-навигатору.
Все началось с загадки кривых. Здесь я использую слово «кривые» в самом широком смысле – для обозначения любой изогнутой линии, изогнутой поверхности или изогнутого твердого тела – представьте себе резиновую ленту, обручальное кольцо, плавающий пузырь, контуры вазы или палку салями. Чтобы упростить вещи, ранние геометры, как правило, сосредоточивались на абстрактных, идеализированных версиях кривых форм и игнорировали толщину, шероховатости и текстуру. Например, математическая сфера представлялась бесконечно тонкой, гладкой, идеально круглой мембраной без толщины, неровностей или волосатости, как у кокосового ореха. Но даже при таких идеализированных представлениях изогнутые формы вызывали принципиальные трудности, поскольку там не было прямых. С треугольниками и квадратами проблем не возникало. С кубами тоже. Они состоят из прямых линий и плоскостей, соединенных между собой в углах. Нетрудно вычислить их периметр, площадь или объем. Такие задачи умели решать геометры всего мира – в Древнем Вавилоне и Египте, Китае и Индии, Греции и Японии. Но с округлыми формами дело обстояло гораздо хуже. Никто не знал, какова поверхность сферы или какой у нее объем. В древности даже вычисление длины окружности или площади круга представлялось невыполнимой задачей. Не было стартовой точки и прямых линий, от которых можно оттолкнуться. Все изогнутое казалось непостижимым.