Полная версия
Современная смерть. Как медицина изменила уход из жизни
Многие из тех механизмов, которые позволяют свершиться смерти, в действительности чрезвычайно важны для выживания не только отдельных особей, но и всей экосистемы. Осенний листопад гарантирует обновление и постоянное возрождение лиственных деревьев. Хуже клетки, которая забыла, как жить, может быть только клетка, которая отказывается умирать.
Когда стало понятно, что клеточная смерть не наступает просто по стечению обстоятельств, ученые приступили к изучению того, как именно клетки отбраковываются с жизненного конвейера и приговариваются к смерти. Является ли это лишь вселенской случайностью, или тут таится нечто большее? Определяет ли будущее клетки безжалостный рок, или оно зависит от ее окружения и предшествующей деятельности? Можно ли по клетке угадать ее возраст, как это происходит с многоклеточными организмами вроде людей? И существует ли способ отсрочить момент клеточной гибели?
Кроме того, хотя бессмертие – лишь теоретическая конструкция, весьма интересно поразмышлять над тем, что же не позволяет нам его достичь. Первая очевидная причина – это болезни. Если люди до хрипоты спорят о смысле своего существования, то большинство биологических организмов предназначены только для того, чтобы жить. Болезнь – это просто любой сбой в тщательно срежиссированной хореографии основных жизненных функций. Пока наша нескончаемая борьба за здоровье идет своим чередом, победа над болезнями по-прежнему остается самым простым способом увеличить продолжительность жизни. Ибо если болезни – это конкретные и узнаваемые отклонения от нормы, где-то на заднем плане скрывается другое препятствие для бессмертия, не менее нормальное, чем сама жизнь. Это старение.
В 1825 году британский математик Бенджамин Гомперц осознал, что у человеческой смертности есть две отдельные причины[15]. В дополнение к внешним факторам, таким как травмы или заболевания, существует также и внутренний износ организма, который он называл “залогом немощи”. Старение, проявляющее себя в появлении седых волос, снижении тембра голоса и ослаблении рефлексов, – это наиболее упорный из врагов человека. Оно неутомимо, как волны, что разбиваются о скалы, и сильно, как река Колорадо, сформировавшая Большой каньон. Возраст продолжает разрушать нас, даже когда мы находим все более эффективные способы предотвращать, лечить и смягчать болезни.
Формирование современных представлений о жизни клеток началось при довольно необычных обстоятельствах. Алексис Каррель, тогда всего лишь студент-медик в Лионе, случайно оказался рядом, когда некий анархист нанес тогдашнему президенту Франции смертельные ножевые ранения[16]. После того как швов, наложенных местными хирургами, оказалось недостаточно, чтобы скрепить поврежденные сосуды президента, Каррель загорелся желанием заняться сосудистой хирургией. Он начал с того, что нанял мадам Лерудье, одну из самых искусных белошвеек Лиона, чтобы она научила его своему искусству[17]. На основе приемов, разработанных для изысканных платьев, Каррель создал технику, которая произвела настоящую революцию в области сшивания человеческих сосудов и органов. Но стоило ему применить свои недавно усвоенные навыки и достигнуть удивительных клинических результатов, вместо заслуженных наград и успешной карьеры на Карреля обрушились лишь несправедливости со стороны тех, кто завидовал его способностям. После многочисленных разочарований он решил бросить все и отправиться в Канаду, чтобы там “забыть о медицине и посвятить себя разведению крупного рогатого скота”[18].
Но не прошло и нескольких месяцев с момента его прибытия в Канаду, как о его талантах стало известно и там, после чего ему предложили место в Чикагском университете. На протяжении следующих десяти лет Каррель сделал для развития хирургии больше, чем практически любой другой хирург того времени. В специальном панегирике The Journal of the American Medical Association так суммировал некоторые его достижения:
Каррель присоединял внутреннюю оболочку к внутренней оболочке, артерию к артерии, вену к вене и артерию к вене – причем делал это концом к концу, бок в бок и концом в бок. Он использовал трансплантаты-заплатки, аутотрансплантаты, аллотрансплантаты, резиновые трубки, стеклянные трубки, металлические трубки и быстро рассасывающиеся магниевые трубки… Он пересаживал щитовидную железу, селезенку, яичники, конечности, почки и даже сердце, тем самым доказав, что с точки зрения хирургии пересадка органов не только возможна, но и не представляет особой сложности[19].
В итоге, к огромной досаде хулителей в его родной Франции, в 1912 году Каррель был удостоен Нобелевской премии по медицине – первым среди ученых из Соединенных Штатов Америки.
Для Карреля, который своими собственными руками справился с таким множеством трудностей, казалось, не было ничего невозможного. Он уже умел восстанавливать кровеносные сосуды, которые ранее считались не подлежащими восстановлению, и пересаживать органы, пересадка которых прежде казалась невозможной. Естественный ход мысли подталкивал Карреля к изучению того, как можно неограниченно долго поддерживать жизнеспособность человеческих органов, – то есть к неизбежному первому шагу на пути к снятию с человека проклятия смертности. Способ выращивать культуры клеток вне тела был найден лишь незадолго до того, и Каррель был уверен, что общепринятая на тот момент теория Августа Вейсмана (уже упомянутого нами первооткрывателя мейоза) об ограниченности числа возможных делений клетки может быть опровергнута[20].
В своей статье под названием “О вечной жизни тканей вне организма”, опубликованной в Journal of Experimental Medicine в 1912 году, он описал эксперименты, которые в итоге дали “окончательный ответ” на этот вопрос[21]. Самый известный из них заключался в том, что Каррель помещал извлеченные из куриных эмбрионов ткани сердца на предметные стекла и инкубировал эти фрагменты тканей при определенной температуре в специальной питательной среде. Опыт Карреля показывал, что отделенная от тела сердечная ткань, в отличие от обычного, обреченного на гибель куриного сердца, продолжала жить многие годы и могла считаться “вечной”.
По мнению Карреля, старение и смерть не являлись чем-то неизбежным, поскольку происходили из-за “накопления продуктов катаболизма и истощения среды”. В сущности, Каррель считал, что на старение и смерть скорее влияют внешние факторы, а не какие-то внутренние, раз и навсегда предопределенные механизмы. Он утверждал, что при определенных, правильно подобранных условиях клетки и ткани могут быть высвобождены из-под вредного влияния своего окружения и что в незнающем недостатка в питательных ресурсах мире жизнь могла бы стать вечной. Благодаря финансированию богатейшего человека того времени, Джона Дэвисона Рокфеллера, и сотрудничеству с также крайне заинтересованным в переосмыслении человеческого опыта Чарльзом Линдбергом, Алексису Каррелю – а после смерти ученого его сотрудникам – удалось сохранить ткани куриного сердца живыми на протяжении 34 лет[22].
Благодаря работам Карреля вечная жизнь начала казаться более достижимой, чем когда-либо прежде, и во многих отношениях с тех пор она только отдалялась. Однако такого существенного продления жизни заслуживал не каждый. Каррель считал, что не все заслуживали и жизни как таковой. В своем бестселлере “Человек – это неизвестное” он писал, что всех преступников и тех, кто “подвел общество в важных вопросах, следует гуманно и экономично устранять путем эвтаназии в небольших учреждениях, снабженных необходимыми газами”[23]. Женщины, в частности, были и не равны мужчинам, и достойны осуждения: “Матери бросают своих детей в детских садах ради карьеры, социальных амбиций, сексуальных удовольствий, литературных или художественных предпочтений, а то и просто ради игры в бридж”.
Тем не менее Вторая мировая война расстроила все планы Карреля. Он вернулся во Францию, чтобы обустроить там полевой госпиталь на сто коек. К сожалению, французские войска быстро сдались, после чего Каррель руководил своим госпиталем на территории сотрудничавшего с Германией правительства Виши и потому стал считаться коллаборантом. Пока он выживал на военном пайке и оперировал больных, его здоровье все ухудшалось: прежде чем Франция была, наконец, освобождена, он перенес два сердечных приступа. И все же сразу после свержения правительства Виши новые власти поместили его с женой под домашний арест. Американцы пытались вмешаться и защитить Карреля от того, что казалось им чересчур агрессивной реакцией французов, но он, не дождавшись реабилитации, умер в ноябре 1944 года в возрасте 68 лет. Он скончался на родине, но униженным и лишенным всех почетных званий.
Несмотря на то что почти одновременно с ним в результате поражения нацистской Германии умерла и евгеника, Каррель все же полностью перевернул господствующие представления о жизни клеток. Однако в наши дни его самым актуальным наследием остаются замечательные швы, накладывать которые он научился у мадам Лерудье, а его открытия в области клеточной биологии не устояли под напором безжалостного времени.
Когда выдающийся биолог Леонард Хейфлик появился на свет в 1928 году, куриные клетки в лаборатории Алексиса Карреля делились уже 16 лет, а его воззрения считались общепринятыми. Даже когда все попытки повторить этот эксперимент потерпели фиаско, сами исследователи полагали, что это связано с неверным составом питательной среды, в которой росли ткани[24].
Подобные сомнения посещали и Хейфлика, поскольку у него тоже не получалось вечно выращивать эмбриональные клетки в своих средах. После получения докторской степени в Пенсильванском университете он занялся тем, что добавлял экстракты различных опухолей к культурам эмбриональных клеток человека в надежде запустить в них раковые процессы. Однако результат был неизменен: после определенного числа делений клетки теряли способность к размножению. Хейфлик не был уверен, вызывалось ли это истощением какого-либо компонента питательной среды, или же происходило вследствие накопления токсичных веществ. Тем не менее, когда он совместил две культуры, смешав старые мужские и молодые женские клетки, первые умирали раньше, а вторые, находясь в той же самой среде, продолжали делиться, пока, наконец, в культуре не остались только женские клетки. Более того, мужские клетки умирали с той же скоростью, что и клетки в контрольной культуре, состоящей только из них. В более позднем эксперименте Хейфлик доказал, что возраст клеток определяется не столько течением времени, сколько количеством циклов репликации ДНК. Он подверг культуру клеток криогенной заморозке, и после размораживания они могли совершить все то же число делений[25]. Австралийский нобелевский лауреат Фрэнк Макфарлейн Бернет назвал этот феномен “пределом Хейфлика”, и его существование раз и навсегда доказало, что прекращение деления клеток зависит от неких внутренних факторов[26].
Работы Хейфлика помогли опровергнуть мнение, которое с начала XX века воцарилось в науке благодаря экспериментам Алексиса Карреля. Хотя Август Вейсман еще в 1889 году выдвинул гипотезу, что число делений клетки ограничено, опыт Карреля с куриным сердцем заставил ученых о ней позабыть. Дальнейшие исследования показали, что эксперимент Карреля был фальсифицирован, и сам он, скорее всего, знал об этом[27]. Каждый раз, когда он добавлял в среду питательные вещества, вместе с ними туда попадали и новые эмбриональные клетки. Якобы вечная куриная ткань постоянно обновлялась за счет этих новых клеток, и спустя всего несколько месяцев в ней уже не было ни одной из тех клеток, с которыми Каррель начинал свой эксперимент. Но теперь, когда “предел Хейфлика” получил всеобщее признание, перед исследователями встал вопрос, почему этот предел вообще существует. Ответ на него смог бы указать на причину старения клеток, а следовательно, и людей.
ДНК – это определяющее функционирование наших клеток микроскопическое шифрованное послание на двойной спирали, компактно упакованное в хромосомы. Каждая обычная клетка человека содержит двадцать три пары таких хромосом; мужские и женские половые клетки содержат по одной копии каждой из двадцати трех хромосом, формируя полный комплект при оплодотворении. После открытия Хейфлика ученые принялись исследовать механизмы, лежащие в основе клеточного старения. С первых же работ, посвященных этой проблеме, основное внимание было приковано к самым кончикам хромосом.
Ученые заметили, что, в то время как центральные участки хромосом содержали уникальные последовательности ДНК, которые были похожи для всех клеток в пределах одного вида и жизненно важны для управления синтезом незаменимых компонентов клетки, последовательности на концах хромосом были совсем другими. Во-первых, при репликации клетка не могла создать полную копию концевых участков своей ДНК[28]. А во-вторых, длина этих участков варьировала в различных клетках, что было необычно, учитывая высокую степень постоянства структуры генома.
В 1978 году, когда Элизабет Блэкберн было всего тридцать лет, она опубликовала первые полученные ею в Йельском университете данные о концевых участках хромосом простейших одноклеточных организмов[29]. Она обнаружила нечто очень любопытное: в отличие от остальных частей хромосом, состоящих из беспорядочных нуклеотидных последовательностей, которые могут управлять синтезом белков и выполнять другие важные функции, концевые участки представляют собой повторы одних и тех же последовательностей, которые одинаковы для самых разных видов и не имеют какого-либо конкретного закодированного содержания. Число таких повторов меняется от клетки к клетке[30], и то же самое наблюдается в клетках человеческого организма[31].
Дальнейшие исследования показали: мало того что длина этих концевых участков, названных теломерами, варьирует от клетки к клетке – что важнее, они укорачиваются с каждым новым делением[32]. Эти наблюдения дали серьезные основания полагать: именно теломеры и ответственны за существование предела Хейфлика, поскольку в тот момент, когда они совсем укорачиваются, состояние клетки становится нестабильным и запускается процесс апоптоза.
В 1985 году Блэкберн и одна из ее учениц по имени Кэрол Грейдер открыли теломеразу – фермент, который отвечает за синтез и удлинение теломер[33]. Добавляя дополнительные повторы, теломераза может увеличивать длину теломер в клетках. Последующие эксперименты показали, что введение гена теломеразы в нормальные в прочих отношениях клетки может значительно увеличивать продолжительность их жизни[34]. Больше того, недавно мы узнали, что повторная активация теломеразы у мышей, преждевременно состарившихся из-за того, что работа теломеразы в их клетках была изначальна подавлена, приводит к исчезновению признаков старости[35]. В наше время концевые участки, которые впервые привлекли внимание ученых еще в 1930-е годы, когда было замечено, что они не участвуют в обмене генетическим материалом между хромосомами, считаются ключевыми для поддержания баланса между жизнью и смертью клеток.
Теломеры, подобно годовым кольцам деревьев, дают очень наглядное представление о непрерывной борьбе особи за выживание. Когда они становятся совсем короткими, клетки уже не могут делиться, не теряя при этом важного генетического материала. Результатом становится нестабильное состояние, которое создает условия для повреждения клеток и в конечном счете их гибели. Нарушения структуры ДНК – это характерная особенность процесса старения клеток, и помимо укорочения теломер существует еще несколько механизмов, которые этому способствуют. Повреждения митохондрий (клеточных электростанций) приводят к высвобождению токсичных веществ, которые могут приближать начало апоптоза.
В настоящее время также известно, что умеренное и сбалансированное питание способствует долгой жизни[36]. Гормон роста и инсулиноподобный фактор роста IGF1, которые ответственны за рост человеческого и многих других организмов, по мере старения снижают свою активность. Тем не менее сокращение потребления пищи на 20–40 % целенаправленно подавляет их синтез и переводит организм в режим выживания. Замечая, что поступление питательных веществ ограничено, клетка замедляет процессы роста, обмена веществ и деления, снижая, таким образом, вероятность возникновения ошибок. Это приводит к увеличению продолжительности жизни. Кроме того, по мере старения наш организм начинает страдать от сокращения количества и снижения качества стволовых клеток, которые иначе могли бы обеспечить постоянное обновление разных тканей.
Судя по всему, клеточное старение так же тщательно регулируется, как и любой другой аспект жизни клетки. Отсюда очевидно, что старость именно достигается, а не просто случается. Причина, по которой клетки стареют, а затем заменяются на новые, – это, как и всегда в микроскопическом клеточном мире, необходимость продолжения жизни. Хотя клетки, подобно нам самим, борются со старением с помощью мощных механизмов устранения неполадок, они также умеют определять, когда уровень накопленных повреждений достигает критической отметки. Именно в этот момент ткани избавляются от тех клеток, которые уже постарели, с целью защиты всего организма от неконтролируемой смерти, некроза. Хотя теломераза, позволяющая клеткам неограниченно делиться, может показаться настоящим философским камнем нашего времени, ее работа имеет мрачные и неоднозначные последствия. Служа отнюдь не источником жизни, но предвестником смерти, она участвует в возникновении практически всех видов рака[37]. Раковые клетки используют теломеразу, чтобы обрести способность к непрерывному делению: они постоянно увеличивают длину концевых участков своих хромосом, отдаляя смерть и бесконечно умножая свое количество.
На клеточном уровне бессмертие уже имеет и имя, и лицо: оно называется раком и выглядит не особенно привлекательно. Парадокс теломеразы, заключающийся в том, что этот фермент необходим и для продления жизни организма, и для размножения раковых клеток, повторяется и в связи со многими другими попытками избежать клеточной смерти. Наши попытки увеличить продолжительность жизни человека тоже напоминают то, что происходит на клеточном уровне, и ведут к изменениям в экологии и обстоятельствах современной смерти. Наша непрекращающаяся борьба со старением, болезнями и смертью приводит к глубочайшим социальным и экономическим сдвигам.
Как была продлена жизнь (и смерть)
Прежде чем стать первым исследователем причин смертности в Лондоне XVII века, Джон Граунт, родившийся в 1620 году, успел прожить множество жизней, в том числе галантерейщика, солдата и члена городского совета[38]. Лондон, в котором он появился на свет, не особенно отличался от того, каким мы видим его сегодня: он был перенаселен, полон мигрантов и вечно стоял в пробках. Те же экономические причины, которые делали необходимым изучение демографической статистики живых людей, лежали и в основе стремления понять процесс умирания. Когда Господь повелел Моисею провести перепись всех взрослых израильтян мужского пола (Книга Чисел 1: 1–3), это было нужно для сбора пожертвований на постройку скинии – переносного жилища Бога, которое евреи взяли с собой при исходе из Египта. Кроме того, перепись требовалась для оценки численности вооруженных отрядов, которые евреи могли бы выставить, если бы битва стала неизбежной. Похожим образом, когда генеральный викарий Генриха VIII Томас Кромвель ввел приходские книги записи рождений и смертей, он сделал это для информирования торговцев, которым было очень важно знать, росло ли число потенциальных покупателей в том или ином регионе, или же они массово умирали от чумы.
Лишь в 1661 году, спустя более 120 лет после введения приходских книг, Джон Граунт систематически проанализировал эти общедоступные записи и опубликовал собранные им результаты[39]. В своей книге “Наблюдения, сделанные над бюллетенями смертности” (Observations on the Bills of Mortality) он собрал данные приходских книг об умерших за несколько десятилетий. Граунт, будучи не более чем “практичным интуитивистом” и почти не обладая математическими познаниями, составил первую современную базу данных о смертности, охватывавшую разные слои населения. Его называли отцом и Колумбом статистики; он оказался первым и единственным стихийным статистиком, который стал членом Лондонского королевского общества[40].
Описание состояния смерти в Лондоне XVII века, одновременно и наглядное, и загадочное, было составлено Граунтом в тот период, когда научный метод только вступал в свои права. Причины смертей, указанные в “Наблюдениях”, охватывают весь диапазон от ужасных и отвратительных до трагикомических. Людей съедали волки и черви, их жизни внезапно прерывались в страхе и горе. Некоторых “находили мертвыми на улицах”, в то время как другие “умирали от голода”, “были застрелены” и “падали в обморок в бане”. В наше время некоторые болезни, упомянутые Граунтом, представляют собой не более чем исторический интерес. “Королевской напастью” называли туберкулез лимфатических узлов шеи, часто проявляющийся в виде гноящихся свищей, вылечить которые якобы мог лишь король Англии. Говорят, что число больных “королевской напастью”, к которым прикасался Генрих VIII, составляло до 4000 в год. “Смятие головы” происходило, когда кости черепа новорожденных смещались, частично наезжая друг на друга, что часто приводило к судорогам и смерти. Многие из указанных Граунтом причин смерти – нарыв, отек печени, водянка, молочница – были лишь симптомами других неустановленных заболеваний.
Некоторые болезни имели в то время другие названия: туберкулез назывался чахоткой, эпилепсия – падучей, сифилис – французской болезнью, психоз – лунатизмом, а инсульт с параличом – апоплексическим ударом[41]. Что же касается иных распространенных причин смерти вроде “прорезывания зубов” или “остановки желудка” – кто знает, чем болели эти несчастные. К счастью от многих заболеваний, среди которых оспа и чума, с тех пор удалось полностью избавиться, а другие (например, цинга, рахит и маразм) были побеждены в развитых странах благодаря улучшившемуся питанию.
В своей работе Граунт доказал, что женщины в среднем живут дольше мужчин и что основной риск смерти приходился на ранние годы жизни. Он сделал интересное наблюдение: смертность выравнивалась с достижением взрослого возраста, так что доля двадцатилетних и пятидесятилетних, умиравших в тот или иной год, была одинаковой. Риск смерти, таким образом, не возрастал при старении, из чего можно сделать вывод, что люди не умирали от возрастных болезней.
В это же самое время по другую сторону Атлантического океана, в Северной Америке, новоприбывшие европейские колонисты чувствовали себя не лучше[42]. Они падали как подкошенные от недуга, который называли “акклиматизацией”. До трети прибывавших в Новый Свет страдали от него в начальный период после переезда, в процессе адаптации к новым условиям. Болезнь могла длиться до года, а многие пациенты продолжали ощущать ее последствия в течение еще многих лет. В настоящее время принято считать, что “акклиматизацией” в действительности могла быть малярия, которая имеет самые разнообразные проявления. Колонисты страдали и множеством других заболеваний, например “истечением крови” (кровавой диареей), которое, вероятно, было одним из проявлений брюшного тифа в результате заражения бактериями из рода Salmonella. В Северной Америке ожидаемая продолжительность жизни европейца XVII века была гораздо ниже, чем у его сверстника, оставшегося дома. Такова была ужасная цена свободы. Впрочем, не слаще приходилось и африканским рабам, которых колонисты привозили с собой.
Несмотря на то что XVIII век стал периодом великих перемен, особенно в Северной Америке, создается впечатление, что медицина и понимание причин смерти не продвинулись за эти сто лет ни на шаг. В 1812 году в одном из самых первых номеров The New England Journal of Medicine (“Медицинского журнала Новой Англии”, хотя в то время он носил название “Медицинский и хирургический журнал Новой Англии”, The New England Journal of Medicine and Surgery) была опубликована годовая статистика смертности для города Бостона[43], который только формировался как центр науки и интеллектуальной жизни, выходя из долгого периода застоя. Как писал Ральф Уолдо Эмерсон, “между 1790-м и 1820-м годом в штате Массачусетс не знали ни книг, ни речей, ни разговоров, ни мыслей”[44]. Бостон, где тогда жило всего около 33 250 человек, был небольшим городом с большим будущим.
Читая список причин смерти жителей Бостона в 1812 году, я обнаружил многие из так полюбившихся мне заболеваний XVII века. Туманные диагнозы вроде гниения, немощи, невоздержанности и судорог указывались как причины смерти значительного числа людей. Среди 942 летальных исходов самый страшный ущерб нанесла чахотка (221), за которой следовали “детский понос”, то есть детская дизентерия (57), и мертворождение (49). Люди продолжали умирать от молнии, в родах, выпив холодной воды, от сумасшествия, червей, омертвления и таинственного “белого отека”. Менее 3 % бостонцев скончались от “старости”, и лишь 0,5 % умерли от рака – вероятно из-за того, что люди не успевали достичь достаточно преклонного для опухолей возраста. При рождении ожидаемая продолжительность жизни составляла 28 лет для мужчин и 25 для женщин. Даже если человек достигал пятилетнего возраста, его ожидаемая продолжительность жизни все равно равнялась 42 годам, увеличиваясь всего до 45 при условии, что он доживал до третьего десятка. Смерть оставалась чем-то внезапным и окруженным множеством суеверий.