bannerbanner
Законы и закономерности развития систем. Книга 4
Законы и закономерности развития систем. Книга 4

Полная версия

Законы и закономерности развития систем. Книга 4

Язык: Русский
Год издания: 2020
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
3 из 5

Пример 22.37. Система управления

Системы управления для объектов с быстро изменяемыми параметрами должны управляться не только по самому сигналу, но и по его первой, второй или более высоким производным.

При длительной работе системы в закон управления желательно вводить интеграл управляемой величины для повышения точности управления.


22.4.3. Динамическая статичность

Статические системы достаточно устойчивы, но не мобильны. Мобильные системы часто неустойчивы. Для придания системе максимальной мобильности и устойчивости ее выполняют динамически статичной.

Динамическая статичность системы осуществляется за счет постоянного управления максимально мобильной системой.


Пример 22.38. Велосипед

Двухколесный велосипед устойчив только в процессе движения. Это динамическая устойчивость или динамическая статичность. Еще менее устойчив одноколесный велосипед.


Пример 22.39. Самолет – истребитель

Для обеспечения максимальной маневренности современные истребители делаются неустойчивыми (они не могут парить), а их устойчивость обеспечивается системой управления, подающей сигналы на рули и закрылки.


22.4.4. Тенденция уменьшения динамичности


В отдельных случаях можно говорить о тенденции уменьшения динамичности – повышения статичности. Система стремится сохранять, не изменять, стабилизировать свои параметры, структуру (в частности форму), алгоритм и принцип действия, функции, чтобы наиболее эффективно достичь поставленной цели и удовлетворить потребности. Кроме того, статичная система стремится сохранить также цели и потребности.

Стабилизация должна происходить во времени и/или в пространстве и/или по условию.

Название тенденции «уменьшение динамичности» условное. По существу, эта тенденция частный случай динамических систем, обеспечивающих постоянство параметра, структуры, функции, потребности, цели и т. д.


Динамическую статичность можно тоже рассматривать как частный случай тенденции уменьшения динамичности.

Пример 22.40. Сохранение традиций

Сохранение традиций – классический пример статической системы.

Большинство народностей стремятся сохранить свои национальные традиции.

Религии тщательно сохраняют свои традиции.

Компании сохраняют свои фирменные традиции.

Традиции передаются из поколения в поколение в семьях.

Это пример тенденции уменьшения динамичности на сохранение целей.


Пример 22.41. Функционирование живого организма

Постоянство функции живого организма обеспечивается регуляторными механизмами. Оптимальная регуляция обеспечивает гомеостаз организма.

И. М. Сеченов (1891) считал, что регуляторы могут быть только автоматическими. По современной терминологии такой вид регуляции называется саморегуляцией.

Явление саморегуляции подводит нас к такому понятию, как взаимодействие органов и тканей, а возможно и клеток между собой.

Это пример тенденции уменьшения динамичности на сохранение функций.


Другое направление – стабилизация формы.


Пример 22.42. Строительство

В строительстве используют монолитный железобетон, особенно это важно при возведении высотных зданий или опор мостов. Таким образом, конструкция получается монолитной.

Это пример тенденции уменьшения динамичности на стабилизацию формы (структуры).


Пример 22.43. Одноразовый стакан

Одноразовые стаканы делают из пластмассы. Стакан должен иметь определенную жесткость, чтобы он не смялся вовремя, когда его берут. В противном случае находящаяся в нем жидкость выльется. В связи с этим стенки стакана должны быть относительно толстые, но это приводит к излишнему расходу пластмассы, что удорожает себестоимость стакана.

В месте, где берутся за стакан, делаются канавки-гофры, кроме того, верхняя кромка стакана сделана в виде полутора, дно также укрепляет стакан, а внизу около дна имеются определенные впадины (рис. 22.39). Подобные решения применяют и в пластмассовых бутылках.


Это пример тенденции уменьшения динамичности на сохранение структуры (формы).


Рис. 22.39. Одноразовый стакан


Существует много разновидностей систем, где необходимо поддерживать параметры стабильными (постоянными) – определенной величины. В качестве параметров можно указать, например, частоту, температуру, давление, натяжение, прочность и т. д.


Пример 22.44. Следящая система


Цель следящей системы – это обеспечение постоянства определенного параметра, за счет постоянной работой системы управления с отрицательной обратной связью.


Пример 22.45. Быстродействие запоминающих устройств

Быстродействие запоминающих устройств (жестких дисков, дискет, DVD) зависит от скорости их вращения. Чем выше скорость вращения, тем быстрее можно записать и считать информацию.

Идеально, чтобы запись и воспроизведение информации происходили без движения записывающего устройства. Эта проблема была решена с изобретением флеш-памяти.

Это пример тенденции уменьшения динамичности на сохранение параметра (движение). Отсутствующее движение.


Пример 22.46. Восстановление

Другое направление стабилизации – реставрация, восстановление и сохранение. Реставрация исторических памятников и предметов искусства, реабилитация больных, сохранение информации и т. д.


Тенденция уменьшения степени динамичности (увеличения статичности) используется для развития систем, в которых необходимо стабилизировать определенные параметры или всю систему в целом.

Для динамизации системы используется закономерность увеличения степени динамичности.

22.5. Направления изменения степени управляемости и динамичности

Общее направление изменения степени управляемости и динамичности определяется закономерностями:

– изменения степени вепольности;

– изменения управляемости веществом, энергией и информацией.


Структурная схема этих закономерностей показана на рис. 22.40.

Закономерность изменения управляемости веществом, энергией и информацией подразделяется:

– закономерность изменения управляемости веществом;

– закономерность изменения управляемости энергией и информацией.


Закономерность изменения управляемости веществом осуществляется тенденциями:

– использование «умных» веществ;

– изменения концентрации вещества;

– изменения степени дробления;

– перехода к капиллярно-пористым материалам;

– увеличения степени пустотности.


Закономерность изменения управляемости энергией и информацией осуществляется тенденциями:

– изменения концентрации энергии и информации;

– переход к более управляемым полям.


Рис. 22.40. Закономерность изменения степени управляемости и динамичности

Глава 23. Закономерность изменения степени вепольности

Веполь – минимальная техническая система.

Г. С. Альтшуллер7

«Развитие технических систем идет в направлении увеличения степени вепольности.

Г. С. Альтшуллер8

23.1. Понятия вепольного анализа

Закономерность изменения степени вепольности является следствием закономерности изменения степени управляемости и динамичности, относящийся к группе закономерностей эволюции систем (рис. 23.1).


Рис. 23.1.Структура законов эволюции систем


Структурный вещественно-полевой (вепольный) анализ – раздел ТРИЗ, изучающий и преобразующий структуру технических систем. Вепольный анализ разработан Г. Альтшуллером9.

Представим определения Г. Альтшуллера.


Веполь – минимальная техническая система10.

«Развитие технических систем идет в направлении увеличения степени вепольности.

Смысл этой закономерности заключается в том, что невепольные системы стремятся стать вепольными, а в вепольных системах развитие идет в направлении перехода от механических полей к электромагнитным; увеличения степени дисперсности веществ, числа связей между элементами и отзывчивости системы»11.

Далее будут представлены определения автора12.

Вепольный анализ – это специальный язык схем, позволяющий представить исходную систему в виде определенной (структурной) модели. С помощью специальных правил выявляются свойства этой системы. Затем по специальным закономерностям преобразовывают исходную модель задачи и получают структуру решения, которое устраняет недостатки исходной системы.

Статистический анализ решений показал, что для повышения эффективности систем их структура должна быть выполнена определенной. Модель такой структуры называется веполем.


Веполь – это модель минимально управляемой системы, состоящей из двух взаимодействующих объектов и энергии их взаимодействия.


Взаимодействующие объекты условно названы веществами и обозначаются В1 и В2, а само взаимодействие называется полем и обозначается П. Поле может представлять собой энергию, силу или информацию.

Подробнее о вепольном анализе можно прочитать в учебном пособии13.

23.2. Закономерность увеличения степени вепольности

Закономерность увеличения степени вепольности заключается в том, что любая система в своем развитии стремится стать более вепольной, т. е. должна повышаться степень вепольности.


Ниже будет представлена закономерность увеличения степени вепольности в усовершенствованном автором виде.


Закономерность включает тенденции, описывающие последовательность изменения структуры и элементов (веществ и полей) веполей с целью получения более управляемых технических систем, т. е. более идеальных систем. При этом в процессе изменения необходимо осуществлять согласование веществ, полей и структуры.

Общая тенденция развития веполей (рис. 23.2) представляет собой переходы: от невепольной системы к простому веполю; на следующем этапе происходит изменение и последующее согласование веществ и полей; затем изменение структуры веполя; и, в конце концов, переход к форсированному веполю.

Форсированный – это максимально управляемый веполь.

Таким образом, в тенденциях развития веполей можно выделить тенденцию построения веполей. Другие тенденции вепольного анализа рассматривают преобразование веполей с целью повышения эффективности технических систем или ликвидации в них вредных связей. Они являются следствием закона увеличения степени вепольности технических систем. При преобразовании в веполях могут изменяться составляющие (вещества и поля) и структура. Эти изменения могут осуществляться частично или полностью, в пространстве и во времени.

Общая тенденция представлена на рис. 23.2—23.6.


Рис. 23.2.Общая тенденция развития веполей


Рис. 23.3.Тенденция изменения структуры веполя


Рис. 23.4.Тенденция изменения комплексного веполя


Рис. 23.5.Тенденция изменения сложного веполя


Рис. 23.6.Тенденция изменения форсированного веполя


Первая тенденция развития веполей – достройка (построение) веполей, т. е. переход от невопольной к вепольной системе. В результате получаем простой веполь (рис. 23.2).

Изменение веществ (В) и полей (П) начинается с подбора или вещества «отзывчивого» на имеющееся поле или поля «отзывчивого» на имеющееся вещество или «отзывчивой» пары (вещество-поле). Подбирая «отзывчивые» вещества и поля мы осуществляем их согласование.

Приведем примеры «отзывчивых» веществ и полей.

1. Ферромагнитное вещество отзывчиво на магнитное поле.

2. Пьезовещество отзывчиво на давление, колебание, вибрацию (механическое поле).

3. Материал с памятью формы отзывчив на тепловое поле.

4. Флуоресцентные и фоточувствительные вещества отзывчивы на оптическое поле.

5. Жидкие кристаллы отзывчивы на электрическое и тепловое поле и т. д.


Практически после построения веполя целесообразно подобрать другие, более подходящие вещества или поля, и после их замены согласовать вновь введенные вещества с имеющимися элементами.

Иногда этого достаточно для повышения эффективности системы.

Дальнейшее развитие системы идет путем изменения структуры и использования форсированных веполей. После каждого изменения необходимо делать согласование.


Рассмотрим более подробно отдельные тенденции построения и развития веполей.

Тенденция изменения структуры веполя (рис. 23.3) представляет собой переход от простого веполя к комплексному и от комплексного к сложному веполю. Это осуществляется в первую очередь за счет увеличения числа связей между элементами и их количества.

В свою очередь тенденция развития комплексного веполя (рис. 23.4) представляет собой переход от внутреннего комплексного веполя к внешнему комплексному веполю и к комплексному веполю на внешней среде.

Эта тенденция обусловлена, прежде всего, тем, что добавки значительно легче вводить не внутрь системы, а прикреплять ее снаружи или еще легче вводить в окружающую среду. Кроме того, такую добавку легко удалить или заменить при необходимости.

Тенденция развития сложного веполя (рис. 23.5) представляет собой переход от цепного веполяк двойному и смешанному веполям.

Наивысшим этапом повышения управляемости веполей является переход к форсированным веполям (рис. 23.6). Форсировать можно вещество, поле и структуру.

Форсирование вещества подчиняется закономерности изменения управления веществом (рис. 23.6).

Напомним, что закономерность изменения управляемости вещества осуществляется тенденциями (рис. 23.7):

– использование «умных» веществ;

– изменение концентрации вещества;

– изменение степени дробления;

– изменение количества степеней свободы;

– переход к капиллярно пористым материалам (КПМ).


Рис. 23.7.Схема закономерности изменения управляемости вещества


Форсирование поля подчиняется закономерности изменения управляемости энергии и информации (рис. 23.8).

Изменение управляемости энергией и информацией осуществляется за счет тенденций (рис. 23.8):

● изменение концентрации:

– энергии;

– информации;

● переход к более управляемым полям:

– замена вида поля;

– переход к моно-, би-, полиполям;

– динамизация полей.


Рис. 23.8. Закономерность изменения управляемости энергией и информацией


Форсирование структуры веполя подчиняется закономерности изменения структуры веполя (рис. 23.3) с учетом форсированных веществ и форсированных полей.

Рассмотрим общую схему закона увеличения степени вепольности (рис. 23.9).

23.3. ОБЩАЯ СХЕМА ЗАКОНА УВЕЛИЧЕНИЯ СТЕПЕНИ ВЕПОЛЬНОСТИ

Рис. 23.9. Общая схема закона увеличения степени вепольности

23.4. Уменьшение степени вепольности

Закономерность уменьшения степени вепольности нацелена на использование монолитного вещества и простейших полей, например, гравитационного или механического.

Это могут быть объекты, состоящие или только их одного вещества или только из одного поля.

Прежде всего, это может относиться к простейшим вещам, состоящим из одной детали. Например, предметы, отлитые из пластмассы или металла, сделанные из единого (монолитного) куска материала или использование ресурсов природы, как в виде веществ, так и в виде поля (энергии и информации).

В качестве примеров можно назвать предметы домашнего обихода, например, вешалки для белья, кухонные приборы, некоторые инструменты, одноразовые предметы и т. д.

23.5. Вепольный анализ для информационных систем

В информационных системах и особенно в программировании не существует веществ и полей.

В связи с этим вещество (В) мы переименовали в элемент и обозначили буквой Э, или на английском буквой E (Element), поледействие и обозначили Д, или на английском буквой (Action). Тогда веполь мы будем называть ЭлД или на английскомEl-Action.

Закономерность увеличения степени ЭлДа (El-Action) представлен на рис. 23.10 —23.13.


Рис. 23.10.Общая тенденция развития ЭлД (El-Action)


Рис. 23.11.Тенденция изменения структуры ЭлД (El-Action)


Рис. 23.12. Тенденция изменения комплексного ЭлД (El-Action)


Рис. 23.13.Тенденция изменения форсированного ЭлД (El-Action)

23.6. Новый подход к вепольному анализу

23.6.1. Новая структура веполя

Общие понятия

Вводится новая структура веполя или ЭлД (на английском El-Action). Кроме элементов и действий, вводится еще один компонент – знание.

Новая структура включает «элемент (Эл), на английском Element (E)», «действие (Д), на английском Action (A)», и «знания (З), на английском Knowledge (K)».

Модель, включающую элемент, действие и знание, будем называть ЭлДЗ (на английском EAK). Методику анализа и преобразования ЭлДЗ будем назвать ЭлДЗ анализ.

Возможны следующие этапы учета знаний (З) в системе.

1. Знания вне системы. Не ЭлДЗ система.

2. Частичные знания водятся при проектировании системы. Остальные необходимые знания находятся вне системы (в надсистеме).

3. Все необходимые знания вводятся в систему. Управление знаниями находится вне системы (в надсистеме).

4. Управление знаниями осуществляется в системе.


Пример 23.1. Сверление отверстия

Необходимо просверлить отверстие в детали.

1. Знания (З) вне системы.

Сверлят вручную. Действие (Д) – это вращение. Оно действует на элемент (Э) – сверло. Знания (З) вне системы. Они находятся у рабочего. Он знает, где необходимо просверлить отверстие и как его сверлить.



2. Частичные знания в системе.

Делается специальное приспособление (кондуктор) для сверления отверстия. Рабочему не нужно не только делать разметку места сверления, но и кернить. Эти знания уже заложены в систему в виде приспособления.

Знание (З) управляет действием (Д), которое воздействует на элемент (Э). Знания, как делать отверстие (технология изготовления) – вне системы (у рабочего). Пунктирная стрелка обозначает, что используется частичные знания.



3. Все знания о процессе в системе.

Станки с числовым программным управлением (ЧПУ) имеют все необходимые знания для осуществления технологии изготовления изделия. Управление этими знаниями – программирование – вне системы. Управление знаниями выполняются оператором.



4. Управление знаниями осуществляется в системе.

Программирование (З2 – знание, управляющее знаниями З1) должно осуществляться в самом станке. Это следующий этап развития.



Этапы 2 – 4 (частичные знания в системе, все знания о процессе в системе, управление знаниями осуществляется в системе) могут быть в общем виде описаны более сложными схемами, чем модели (23.2) – (23.4).

Элемент (Э) может первоначально содержать какие-то знания (З). Для управления элементом (Э), часто необходимо знание (З) о его состоянии. Это знание учитывается при проектировании, заранее подстраивая действие под данное состояние. При работе системы не учитывается изменение состояния элемента. Действие всегда одинаково.

Тогда модель (23.2) можно представить так:



где З1 – знание о состоянии элемента Э. Это знание З1 изменяет действие Д в зависимости от состояния элемента Э. Пунктирные стрелки означают, что знание о состоянии элемента введено заранее.

На этапе 3, если состояние элемента (Э) контролируется, т. е. система постоянно получает информацию о состоянии элемента, то модель (23.3) может быть представлена так:



Этот случай характерен для любых самонастраивающихся систем.


Пример 23.2. Самонаводящаяся ракета

С помощью головки самонаведения, расположенной в носовой части ракеты, получаются данные о координатах цели, направлении и скорости ее передвижения.

Эти данные передаются в систему автоматического управления ракетой, которая направляет ракету в нужном направлении и с нужной скоростью.

Этап 4 при контролировании состояния элемента (Э) может быть представлен, например, так:



где

З1 – знание, управляющее действием (Д);

З2 – знание о состоянии элемента (Э);

З3 – знание, управляющее знаниями (З1).


Пример 23.3. Самонаводящаяся ракета

В примере 23.2 с самонаводящейся ракетой З3 может представлять собой, например, изменение цели, отмену действия или самоуничтожение и т. д.


Пример 23.4. Изготовления шоколада

Рассмотрим процесс изготовления шоколада.

1. Знания (З) вне системы.

Сначала процесс осуществлялся человеком вручную. Он знал весь процесс. Выбирал необходимые бобы какао, жарил их и молол до нужной консистенции. Таким образом, знания о процессе изготовления шоколада были только в голове работника, т. е. знания не присутствовали в системе.

2. Частичные знания в системе.

На страницу:
3 из 5