Полная версия
Человек и его вселенная. Издание второе переработанное
Как у движущейся материи у космоса можно выделить следующие три особенности:
– как и человек космос может существовать только в определённой среде, обеспечивающей космосу возможность движения и развития;
– как психика у человека у космоса помимо видимой части есть ещё и невидимая часть, которую для удобства изложения назовём энергетическим полем космоса (без этого поля современный активный космос превратился бы в пассивный космос, как человек без психики превращается в "живой труп");
– всё, что происходит в космосе, предопределяется действием на него энергетического поля космоса, как поступки человека предопределяются его психикой.
Как у пространственной материи у космоса можно выделить следующие семь уровней организации:
– космос или метагалактика состоит из галактик, как космическая цивилизация – из планетарных;
– галактики состоят из совокупности звёзд и звёздных систем, подобно планетарным цивилизациям, состоящим из совокупности сообществ;
– звёздные системы состоят из космических тел (звезд, планет, комет, метеоритов и других) как сообщества состоят из индивидуумов;
– космическое тело состоит из своих составных частей – веществ, находящихся в твёрдом, жидком, газообразном или плазменном состояниях, как физическое тело человека – из систем, органов и тканей;
– вещества состоят из молекул и атомов, как органы и ткани физического тела человека состоят из клеток;
– атомы состоят из элементарных частиц, как живые клетки из органических молекул, и подобно клеткам, имеют определённую организацию, обеспечивающую возможность роста атома в более крупные и его деления на более мелкие;
– элементарные частицы подобно органическим молекулам, состоящим из атомов, также состоят из более мелких частичек материи, наиболее простым из которых подобно атому водорода является квант материи.
Как у временно́й материи у космоса (причём как у каждого космического объекта, так и у всей материи в целом) можно выделить следующие семь этапов жизненного цикла:
– состояние до зарождения материи, которое можно назвать пра-материей;
– зарождение зародышей космических тел, то есть образование квантов материи;
– утробное развитие, то есть образование составных частей будущих космических тел (элементарных частиц, атомов и молекул);
– рождение, то есть образование газообразных и жидких космических тел (для всей же материи в целом рождение – это появление первых значительно разряженных эфирных шаров вокруг появившихся космических тел);
– рост и развитие, то есть слияние космических тел и образование больших (твёрдых и плазменных) космических тел: планет, звёзд и звёздных систем (рост и развитие материи в целом сопровождается и ростом разряженных эфирных шаров вокруг растущих космических тел);
– старение, то есть дальнейший рост звезд и образование сверхмассивных, нестабильных космических тел типа звезд-гигантов и черных дыр (а для материи в целом это дальнейший рост разряженных эфирных шаров вокруг сверхмассивных космических тел);
– смерть, то есть распад нестабильных космических тел в процессе дальнейшего их роста (а для материи в целом это превращение вселенной в один огромный разряженный эфирный шар, окруженный слоем материи, лишённой возможности движения из-за полного отсутствия эфира, как указано в параграфе 3.1.2. Эфир).
На основе изложенного выше общего представления о космосе попытаемся детализировать перечисленные выше семь этапов жизненного цикла материального космоса.
1.4. Этапы жизни космоса
В силу особой важности для гипотезы Всеобщего взаимодействия первых трёх этапов, они будут изложены достаточно подробно в следующих трёх самостоятельных разделах, а последние четыре этапа будут изложены весьма коротко и в одном общем разделе.
1.4.1. Пра-материя
Во-первых, надо попытаться представить себе, чем является та среда, без которой космос существовать не может. По-видимому, как плод нуждается в чреве матери, так и зарождающийся космос, нуждается в аналогичной среде. Даже после рождения ребёнок нуждается в матери, особенно в первые периоды жизни, так и эта среда является для космоса необходимой и после его зарождения.
Поэтому эту среду по праву можно назвать пра-материей, то есть тем, что предшествовало и породило материальный космос, или просто материю. Тут необходимо оговориться, что под материей в данном исследовании подразумеваются все грубо-материальные объекты, начиная с квантов материи. А тонко-материальные объекты: интеллект, мысли, чувства и даже прана и пра-эфир (с квантами эфира и пространства) под материей здесь не подразумеваются.
Название этой пра-материи не имеет существенного значения. Для изложения данного материала мы используем принятое древними мыслителями название – эфир. На наш взгляд, составляющая около 70% состава всей вселенной тёмная энергия, существование которой наука предположила в конце 1990 годов [7], является ничем иным, как пра-материя или эфир, а точнее пра-эфир.
1.4.1.1. Прана
Очевидно, что без нечто внешнего по отношению к эфиру материя не может зародиться, как не может образоваться плод без отца. Поэтому можно предположить, что "отцом" материи является та невидимая часть космоса, которую мы назвали энергетическим полем космоса. Для упрощения будем называть его праной, что в соответствии с философией йогов означает жизненную силу. Таким образом, можно сказать, что прана является отцом материи, эфир – матерью, а материя есть детище праны и эфира.
Здесь следует ещё раз оговориться, что, в соответствии с принципом материальности, материей является не только космос, но и эфир, прана и даже чувства, мысли и интеллект. Определение космоса как проявленная материя является относительным, поскольку остальная материя остаётся непроявленной лишь для человека. Объективно же она также проявлена, как и космос. Разница между ними заключается лишь в том, что элементарные частицы непомерно грубы не только по сравнению с интеллектом, мыслями и чувствами, но и даже с праной и эфиром. Однако из-за отсутствия подходящего слова, а также из-за неточности и неудобства использования словосочетания "проявленная материя", в данной работе материальный космос, то есть грубую материю, мы условно будем называть просто материей.
Для стоящей перед нами задачи достаточно знать, что прана есть внешняя по отношению к эфиру сила, под воздействием которой в эфире зарождается материя. Что касается эфира, то его надо представить себе более детализировано, чем прану.
1.4.1.2. Эфир
В отличие от любых объектов, характеризующихся ограниченными пространственными размерами, эфир заполняет собой всё реальное пространство. На основании принципа дискретности можно заключить, что эфир, то есть реальное пространство, имеет квантовую структуру. Эфир можно сравнить с неочищенным от сот мёдом. Как соты являются формой, а мёд содержанием, так и реальное пространство является формой, а эфир его содержанием.
1.4.1.2.1. Кванты пространства и расстояния
Кванты пространства, по всей вероятности, должны обеспечивать выполнение следующих трёх условий:
– тождественность формы и размеров квантов,
– возможность заполнения квантами всё реальное пространство без пустот,
– обеспечение контактирования квантов с возможно большим количеством соседних квантов.
Для выявления кванта пространства, удовлетворяющего всем перечисленным условиям, представим пространство, плотно заполненное одинаковыми шарами, как показано на рисунке 1.
Рисунок 1. Пространство, заполненное шарами
В таком случае каждый шар будет контактировать с 12 –ю соседними шарами, но между ними, разумеется, будут и пустоты (см. рисунок 2).
Рисунок 2. 12 смежных сфер, соприкасающихся со сферой
Если воздействовать со всех сторон одинаковым внешним давлением на такое образование, но из пластичных шаров, то благодаря их пластичности, пустоты исчезнут, а шары приобретут форму двенадцатигранника с равными гранями в форме ромбов, то есть форму ромбододекаэдра, как показано на рисунке 3.
Рисунок 3. Квантованное пространство
Заполнить пространство без пустот можно и другими одинаковыми фигурами, например кубами, параллелепипедами или их частями, однако только ромбододекаэдр может обеспечить контактирование с 12-ю соседними ромбододекаэдрами, что является максимально возможным количеством контактов при перечисленных выше условиях.
Если расположить ромбододекаэдр таким образом, чтобы две его противоположные вершины, являющиеся общей точкой четырёх граней, оказались на вертикальной линии (см. рисунок 4), то у него можно выделить три зоны, каждая из которых состоит из четырёх граней:
– верхнюю зону (на цветном рисунке она красная), назовём её северной, или положительной;
– среднюю зону (на цветном рисунке она жёлтая), назовём её экваториальной, или нейтральной;
– нижнюю зону (на цветном рисунке она зелёная), назовём её южной, или отрицательной зоной.
Рисунок 4. Зоны кванта пространства
Расстояние между центрами двух соприкасающихся верхней и нижней зонами квантов пространства является минимально возможным расстоянием и называется квантом расстояния. На рисунке 5 квант расстояния показан прямой линией с шарами на её концах (на цветном рисунке эта линия красного цвета).
Рисунок 5. Квант расстояния
1.4.1.2.2. Сети квантов пространства
Аналогично пчелиным сотам, состоящим из рядов ячеек, изолированных друг от друга гранями, реальное пространство состоит из рядов квантов пространства, каждый квант которого изолирован от соседних квантов гранями. Ряды квантов, находящиеся в одной плоскости, образуют слой, в котором все кванты касаются соседних квантов этого слоя гранями своей средней, то есть экваториальной, зоны. На основании принципа раздвоенности можно предположить, что существуют два типа квантов пространства (условно назовём их, например, белыми и чёрными) и во всех слоях пространства они расположены в шахматном порядке.
Как видно из рисунка 6, в пределах всего слоя однотипные кванты пространства не контактируют друг с другом своими гранями, а контактируют исключительно с квантами противоположного типа.
Рисунок 6. Слой квантов пространства
Очевидно, что в двух соседних слоях квантов пространства верхний слой южными зонами своих квантов контактирует с северными зонами квантов нижнего слоя. В этом случае неминуемо каждый квант одного слоя будет контактировать своими гранями с двумя однотипными квантами другого слоя, образуя две сети сообщающихся квантов пространства (см. рисунок 7).
Рисунок 7. Связь между квантами одного типа в двух смежных слоях
Если в первых двух слоях квантов пространства цвета квантов изменить на противоположные и добавить их к первым двум в качестве третьего и четвёртого слоёв, то получим четырёхслойный фрагмент пространства. В таком фрагменте пространства каждый квант внутренних слоёв квантов пространства будет контактировать своими гранями с четырьмя однотипными квантами: двумя из верхнего слоя и двумя из нижнего слоя, как видно на рисунке 8. Реальное же пространство состоит из множества таких четырёхслойных фрагментов, расположенных одна на другой как многослойный пирог.
Рисунок 8. Четырехслойный фрагмент пространства
Таким образом, реальное пространство состоит из двух переплетающихся сетей квантов пространства (далее называемых сетями). На рисунке 9 изображены две сети, в котором ради наглядности кванты пространства заменены квантами расстояния (на цветном рисунке они показаны красным и синим цветами, а на черно-белом рисунке красные линии можно определить по шарам на их концах). Условно их также можно назвать положительной и отрицательной сетями, хотя они ничем не отличаются друг от друга, кроме пространственной разобщённости. Так как эти две пространственные сети не имеют ни одного общего кванта пространства, то попасть движущейся точке из одной пространственной сети в другую невозможно.
Рисунок 9. Пространственные сети
Если центры квантов пространства этих пространственных сетей соединить плавной пространственной линией, то вместо ломаных линий получатся волновые и винтовые линии, как это видно из рисунка 10. Для большей наглядности на рисунке 10 представлена лишь одна из двух сетей с двумя волновыми линиями: красного (проходящего через шары) и чёрного цветов и двумя винтовыми линиями: оранжевого (проходящего через шары) и синего цветов, расположенными во взаимно перпендикулярных направлениях.
Рисунок 10. Возможные траектории движения точки в пространственной сети
В пространственных сетях не могут размещаться прямые линии. Признание такой структуры реального пространства позволяет заключить, что прямые линии в природе являются лишь идеализацией волновых или винтовых линий.
1.4.1.2.3. Кванты эфира и потенциальной энергии
Как мёд состоит из малых порций, заключённых в ячейках пчелиных сот, так и эфир состоит из квантов эфира, заключённых в квантах пространства. Квант эфира представляет собой тонкую вибрирующую материю, обладающую высокой потенциальной энергией, аналогично упругому шару, сжатому в ладони. Как и шар давит на ладонь, квант эфира вызывает давление q на соседние кванты эфира. Это давление стремится переместить соседние кванты эфира в более удалённые кванты пространства.
Как в пчелиных сотах можно обнаружить пустые ячейки, так и в эфире могут встретиться кванты пространства, не содержащие квантов эфира, то есть с нулевой энергией. Назовём их вырожденными квантами пространства.
Если под плотностью эфира подразумевать отношение суммарной энергии квантов эфира к занимаемому этими квантами эфира объёму пространства, то до зарождения материи в реальном пространстве плотность эфира имела максимальное значение p, так как все кванты пространства содержали кванты эфира с энергией E0. Поэтому, несмотря на огромное взаимное давление квантов эфира, у них не было возможности перемещаться в соседние кванты пространства. Кванты эфира не обладают кинетической энергией, так как они не перемещаются и не имеют массы в обычном её представлении (масса в кванте эфира существует лишь потенциально).
Энергия кванта эфира является исключительно потенциальной, аналогично жизни, заложенной в яйцеклетке. Величина этой энергии равна минимально возможному значению потенциальной энергии. Назовём эту величину квантом потенциальной энергии. Эта энергия проявляется, то есть превращается в кинетическую, только после воздействия на неё праны, аналогично появлению новой жизни только после оплодотворения яйцеклетки.
1.4.2. Образование квантов материи
1.4.2.1. Кванты материи, массы и кинетической энергии
Пробуждённый праной квант эфира, расположенный в кванте пространства, сильно уплотняется, превращаясь в квант материи, при этом энергия кванта эфира E0 преобразуется в массу кванта материи m0. Значение массы кванта материи является минимально возможной. Назовём её квантом массы. Но на этом действие праны на эфир не заканчивается. Прана придаёт кванту материи кинетическую энергию с минимально возможным значением равным одному кванту кинетической энергии e0. Используя формулу Эйнштейна об эквивалентности массы и энергии, мы можем сделать вывод, что суммарная энергия праны и кванта эфира E, масса кванта вещества m0 и его кинетическая энергия e0 связаны с помощью следующего уравнения:
Другими словами, суммарная энергия праны и кванта эфира E частично превращается в массу m0 и частично в кинетическую энергию e0 кванта вещества.
Поскольку прана всегда имеет какое-то направление, то она в пространственной сети по траектории, соответствующей этому направлению, находит следующий ближайший невырожденный квант пространства и благодаря кванту кинетической энергии за ничтожно малый промежуток времени осуществляет крайне необходимое для жизни космоса действие.
Суть этого действия заключается в одновременном преобразовании состояния содержимого в двух квантах пространства. В найденном невырожденном кванте пространства прана преобразует квант эфира в квант материи, а в первом – квант материи преобразуется обратно в квант эфира. Затем происходит аналогичный процесс одновременного преобразования содержимого между вторым квантом и следующим невырожденным квантом пространства и так далее. При этом создаётся впечатление обмена содержимым в двух квантах пространства, хотя на самом деле, исходя из принципа дискретности, такой обмен происходить не может.
1.4.2.2. Природа движения
Если последовательно включать и выключать электрические лампочки, расположенные по некоторой линии близко друг к другу, то создаётся впечатление движения по этой линии светящейся точки. Аналогично последовательное преобразование содержимого квантов пространства создаёт впечатление движения кванта материи. Кроме того, это преобразование происходит в течение чрезвычайно малого промежутка времени, поэтому создаётся ещё и впечатление непрерывности движения кванта материи. Поскольку само движение и его непрерывность не являются реальными, то в дальнейшем под движением мы будем подразумевать лишь кажущееся движение. Точно также кажутся непрерывными (не дискретными) и другие формы существования материи и её свойства: пространство, энергия, время, трение, инерция и так далее.
Структура пространства эфира позволяет кванту материи двигаться в любом направлении, однако в зависимости от направления движения будет меняться траектория его движения. Квант материи "попадает" в каждый квант пространства из одного из четырёх однотипных квантов пространства, сообщающихся с ним. Затем этот квант материи "переходит" в один из трёх других однотипных квантов пространства, а именно в тот, "переход" в который обеспечит наименьшее отклонение от заданной траектории движения. Иными словами, "переход" произойдёт в тот квант пространства, при котором проекция отрезка прямой, соединяющей центры этих квантов пространства, на направление движения будет наибольшая из трёх возможных проекций.
В общем случае траектория движения кванта материи представляет собою некоторую пространственную кривую, состоящую из чередующихся участков винтовой и волновой линий. В частных случаях траектория движения может оказаться исключительно винтовой линией, либо – исключительно волновой линией. Из вышеизложенного можно сделать очень важный вывод о том, что для любого движения необходима среда:
Как нет явления без сути, Так нет движения без среды.1.4.2.3. Квант времени
Квант времени – это минимальный интервал времени, который требуется для осуществления самого кратковременного процесса в материальном мире. Ни одно действие в материальном мире не может быть осуществлено за время, меньшее чем один квант времени. За один квант времени происходит смена состояния в двух соседних квантах пространства. В одном кванте пространства квант материи превращается в квант эфира, а в другом, ближайшем по траектории движения кванта материи, квант эфира превращается в квант материи. При отсутствии вырожденных квантов пространства, скорость кванта материи по траектории движения и его кинетическая энергия являются постоянными.
Так как при разных направлениях движения траектории отличаются, то при постоянной скорости кванта материи по траектории его скорость по направлению окажется зависящей от направления. Наибольшая скорость по направлению получается при волновой траектории, а наименьшая – при винтовой. Это свидетельствует об анизотропности пространства.
Однако анизотропность пространства экспериментально не подтверждается. Наоборот, опыт показывает, что пространство будто является изотропным. Эта иллюзия изотропности нуждается в объяснении.
1.4.2.4. Анизотропность пространства
Изотропным пространство не может быть из-за его квантовой структуры. Что касается практики восприятия пространства изотропным, то объясняется это следующим образом. Поскольку масса квантов материи постоянна, то скорость движения кванта материи по его траектории зависит исключительно от кинетической энергии. В процессе материализации кванты материи получают одинаковую по величине кинетическую энергию. Но они в зависимости от траектории движения тратят различные доли своей энергии на преодоление инерции. Минимальные затраты энергии получаются при движении кванта материи по винтовой линии, так как в этом случае происходит минимальное изменение вектора скорости. А наибольшие затраты энергии получаются при движении по волновой линии, поскольку при такой траектории движения изменения вектора скорости значительны.
Поскольку при разных траекториях движения кванты материи тратят разные значения своей энергии, то зависящая от оставшейся энергии скорость квантов по траектории их движения оказывается разной, что приводит к одинаковым скоростям движения по всем направлениям пространства. Это обстоятельство и создаёт иллюзию изотропности пространства.
1.4.2.5. Квант трения
В процессе материализации, когда прана воздействует на квант эфира, квант эфира оказывает некоторое сопротивление пране, подобно трению, которое испытывает движущееся в материальной среде тело. Это минимальное сопротивление является квантом трения. Наличие трения не позволяет кванту материи двигаться по траектории своего движения с бесконечной скоростью, поэтому максимальная скорость движения кванта материи и материальных частиц ограничена.
Кроме того, трение приводит и к потере энергии кванта материи, а следовательно и энергии света.
1.4.3. Образование материальных частиц и тел
1.4.3.1. Клеточная структура материи
Если два движущихся кванта материи в соответствии с траекториями их движения должны одновременно "попасть" в один и тот же квант пространства, в котором находится квант эфира, то в этом кванте пространства появится материальная частица с удвоенной массой. Скорость этой материальной частицы будет равна векторной сумме скоростей слившихся квантов материи. В соответствии с законом сохранения энергии, квант эфира может восстановиться только в одном из двух квантов пространства, где находились кванты материи, а другой квант пространства остаётся свободным, то есть без квантов материи и кванта эфира. Иными словами, он становится разряженным или вырожденным. Так образуется вырожденный квант пространства, примыкающий к кванту пространства с удвоенной массой. При дальнейшем движении материальной частицы с удвоенной массой происходит "переход" частицы с удвоенной массой в следующий по траектории движения квант пространства, квант эфира восстанавливается в вырожденном кванте пространства, а квант пространства, в котором находилась материальная частица с удвоенной массой, становится вырожденным.
Таким образом, вырожденный квант пространства оказывается рядом с движущейся материальной частицей с удвоенной массой. С дальнейшим ростом массы движущейся материальной частицы образуются всё новые и новые вырожденные кванты пространства, примыкающие к увеличенной материальной частице, создавая всё большее разряжение эфира вокруг неё. Как будет показано далее, это разряжение эфира является единственной причиной взаимодействия между любыми объектами (частицами микромира и телами макромира).
Наконец, наступает такой момент, когда образовавшаяся материальная частица не может разместиться в кванте пространства. Тогда последующий рост материальной частицы сопровождается заполнением квантами материи соседнего кванта пространства, что в свою очередь замедлит движение полученной материальной частицы, так как для её движения необходимо осуществлять смену состояния не в одной, а уже в двух парах квантов пространства.