Полная версия
Физика повседневности. От мыльных пузырей до квантовых технологий
Представим, что стрелок находится на Северном полюсе, в точке N (илл. 4), и выпускает в направлении цели C, движущейся вместе с Землей, пулю P с начальной скоростью v. Земля вращается вокруг своей оси с угловой скоростью Ω, равной одному обороту в день. Таким образом, через некоторое время t она провернется на угол Ωt, и цель сдвинется вместе с ней. Тем не менее, с точки зрения стрелка, стоящего на Северном полюсе и глядящего на цель, все происходит так, будто бы последняя осталась на месте, а пуля отклонилась от заданной им траектории NC. Расстояние от P до линии NC в момент t составляет приблизительно произведение угла Ωt на пройденное пулей расстояние vt, то есть Ωvt2. В этом рассмотрении мы считаем промежуток времени достаточно коротким, а угловую скорость Ω – измеренной в радианах в секунду.
4. Отклонение пули под действием силы Кориолиса в системе отсчета, связанной с Землей. Пуля, выпущенная из ружья на Северном полюсе N в направлении цели C, отклоняется к западу от цели. Для наблюдателя вне Земли траектория пули – прямая линия (фиолетовая). Для наблюдателя, связанного с Землей, траектория представляется красной кривой (ее кривизна здесь сильно преувеличена): действующая на пулю сила Кориолиса придает ей ускорение Г→CO, показанное на рисунке в два разных момента
Таким образом, для достаточно малых промежутков времени пуля относительно Земли будет равномерно двигаться в направлении NC со скоростью v и в то же время равноускоренно двигаться вправо, в направлении, перпендикулярном отрезку NC (если бы стрельба производилась на Южном полюсе, то пуля отклонилась бы влево). При этом ускорение, называемое Кориолисовым, оказывается равным 2Ωv (вторая производная по времени от пройденного расстояния Ωvt2). В соответствии со вторым законом Ньютона (см. главу 4, врезку «Ньютоновская механика»), это означает, что на пулю воздействует сила величиной 2Ωvm, сонаправленная ускорению Кориолиса. Это и есть сила Кориолиса.
Ускорение Кориолиса всегда перпендикулярно мгновенной скорости (илл. 4). Напомним, что в рассматриваемой задаче, благодаря действию силы тяжести, имеется еще и вертикальное ускорение, которое мы (в отличие от артиллеристов!) здесь не учитывали.
Уточним, что сила Кориолиса – сила «фиктивная», или, как часто говорят, сила инерции, потому что она не вызвана физическим воздействием одного тела на другое. При описании движения тела во вращающейся системе координат сила Кориолиса должна учитываться всегда, когда скорость тела не направлена вдоль оси вращения.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Сноски
1
На самом деле чуть меньше 24 часов. Во всей этой главе мы пренебрегаем вращением Земли вокруг Солнца. Таким образом, относительная ошибка равна 1/365, что составляет абсолютную ошибку около 4 минут. Кроме того, достаточно половины оборота, то есть чуть меньше 12 часов, чтобы плоскость качания маятника вернулась в первоначальное положение.