bannerbanner
Неизвестная энергия. Природа, действие и продукты
Неизвестная энергия. Природа, действие и продукты

Полная версия

Неизвестная энергия. Природа, действие и продукты

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
9 из 11

Фото 10. Схема электрона, обозначенная электро (синими) и гравпотенциалами (красными) его волновода со структурой высокочастотного гравиэлектромагнитного монополя и его фантом из соответствующих зёрен-потенциалов


Компоненты замкнутого микровихрона электрона:

– гравитационный монополь ГЭММ, полный аналог магнитного монополя, но существующий при скоростях движения материи равной или ниже скорости света, который при разрядке рождает,

– магнитный монополь только с одним знаком, регенерирующийся при разрядке-дезинтеграции гравитационного монополя ГЭММ,

– обратный переменный электрический монополь, изменяющий электрическое поле на четверти длины волны электрона, регенерирующий тот же по знаку магнитный монополь, который начинает им заряжаться, индуктируя магнитный момент электрона, начиная с четверти длины волны имплозией в узел,

– виртуальный спиральный волновод из отрицательных зёрен-электропотенциалов одного знака, образующий пульсирующий замкнутый контур электрона, который формирует внешнее электрическое поле электрона,

– вихревое магнитное поле, улетающее со сверхсветовой скоростью и формирующее магнитный момент электрона,

– вихревое гравитационное поле замкнутого контура электрона, образующее пульсирующий замкнутый контур электрона, улетающее со сверхсветовой скоростью и формирующее внешнее гравитационное поле электрона,

– в момент имплозии магнитного монополя в узел зёрна в его объёме становятся гравитационными, а сам магнитный монополь делает квантовый переход в гравитационный монополь, а его зерна переходят в двухкомпонентные с ядром из зерна-электропотенциала и оболочки из гравитационных зёрен-гравипотенциалов.


В отличие от структуры электромагнитных зёрен свободного магнитного монополя фотона, в электроне гравитационный монополь образуется в результате конденсации сверхсветовой магнитной материи из сверхбыстрой энергии движения в энергию покоя путем последовательной замены магнитных зёрен-потенциалов на гравитационные. В результате магнитный монополь превращается в гравитационный, а структура зерен становится электрогравитационной.

Эффективный размер фазового объёма волноводов свободного электрона в состоянии покоя составляет величину 1,2 х 10—10 см и существенно (на три десятичных порядка) превосходит размеры атомного ядра. Время жизни электрона оценивается в 4,2 х 10 24 лет и определяется зарядом энергии в форме замкнутого магнитного монополя. Эта энергия расходуется на создание и обновление с частотой около 10 20 Гц его одноконтурного и пульсирующего замкнутого волновода из зёрен-электро и гравпотенциалов, который и формирует внешнее поле электрона, представленное на фото 11. Вращаясь с такой частотой, магнитный монополь (гравитационный монополь) электрона воспроизводит новый волновод, отталкивая старый во внешнее пространство и формируя аномально большой магнитный момент.


Фото 11. Пульсации обновлённых магнитным монополем контуров электрона при формировании его внешнего поля


Объём этого поля-пространства, как и длина космического трека фотона из-за горизонта, соизмерима с объёмом нашей всей Вселенной. Его стабильное по возрасту жизни микропространство имеет отрицательный (позитрон – положительный) заряд 1,6 х 10—19 Кл в системе СИ, хотя реально в природе не существует таких зарядов, как не существует заряда массы, силы и времени. и т. д. А существует вихревой электрический монополь – заряд электрическим потенциалом (источник) и вихревой гравитационный монополь – заряд гравитационным потенциалом (источник), которые рождают внешние вихревые поля – неравномерно по спиралям размещённые на его одноконтурном волноводе. Указанные на фото 11 кластеры внешнего поля электрона, излучаются последовательно в разные моменты времени. Форма пульсирующего одноконтурного замкнутого волновода из электропотенциалов и гравпотенцилов определяет каноническую форму для всех лептонов – полуцелый спин.

Все эти данные и легли в основу о механизме рождения спина у электрона под действием магнитного монополя, т.е. вращения при разрядке гравитационного монополя.

Внешнее проявление свойств формы и размера волноводов-полей электрона с вращающимся полярным магнитным монополем зависит от скорости его движения и состояния степени свободы (связан в атоме или полностью свободен) – это его спин, электрический заряд, геометрическая структура с определёнными размерами (длина волны) и индуктируемая масса (в терминах системы СИ или СГС), а также бесконечно долгое время жизни, определяемое запасом его внутренней энергии в форме магнитного монополя. Для сравнения заметим, что запаса внутренней энергии магнитного монополя, рождённого при снятии возбуждения атома, достаточно, чтобы фотон мог пролететь всю глубину нашей Вселенной из-за невидимого горизонта, т.е. 10 28 см, за 14 миллиардов лет. Внутренние свойства электрона, ответственные за эти внешние проявления, обусловлены процессами, происходящими в резонансном замкнутом микровихроне, в котором поляризованный магнитный монополь периодически и всегда движется-вкручивается (имплозия осевая) в одном направлении в сторону к центру поверхности полусферы (узел), где исчезая, заряжает гравитационный монополь. Последний источник, разряжаясь индуктирует электрический монополь и два внешних контура волновода электрона. Одно – переменное электрическое поле-волновода (внешняя спираль), которое рождает уже электрический монополь, как источник, что и реанимирует магнитный монополь – индуктирует и периодически заряжает магнитный монополь на удалении от четверти длины волны (пучность) в узел. Другое – волновод вихревого гравитационного поля – внутренняя спираль разрядки гравитационного монополя, показанная на фото 10. Так образуется замкнутый канонический одноконтурный фазовый объём с полуцелым спином элементарной частицы электрон с массой, т.е. элементарная частица со структурой активированного гравиэлектромагнитного монополя (ГЭММ). Указанные вращательно-поступательные движения магнитного и гравитационного зарядов и определяют направление вектора спина, спиновый магнитный момент и собственный механический момент электрона, а их магнитомеханическое отношение есть величина постоянная для стабильных микрочастиц – это основной закон природы. Как только поверхностный контур электрона замкнулся, его оба внутренних заряда стали пульсировать (фото 11), проявляя направление спина и обновляя-переизлучая контуры, создавая внешние мгновенные вихревые поля частицы – электрическое, гравитационное и магнитное.

В отличие от фотона электрон имеет заряд электрическим потенциалом дополнительно и в третьей форме, излучаемых свободно внешних электрических полей, которые при большой концентрации электронов могут создавать облако шарового круглого и газо и светоподобного электричества. Такое облако после соответствующего захвата и компрессии способно рождать холодное электричество, которым играл Н. Тесла, перекладывая его из коробки или заливая его в бутылку.

Таким образом, обновлённый контур из зёрен-потенциалов направленно последовательно выталкивает-излучает предыдущий и формирует внешние поля электрона. Существенно, что эти поля в кластерах атомно-молекулярного вещества можно поляризовать мощным импульсным внешним полем и зафиксировать их направленность в решётке твёрдого тела, например их спины – это производство постоянных магнитов.

Та энергия магнитного монополя, которая в фотоне идет на рождение трека из зёрен-электропотенциалов длиной более 10 28 см, в электроне идет на поддержание и обновление внешних полей, т.е. уже объёма с радиусом, равным длине указанного трека фотона. Ответ на вопрос – как долго может длится этот процесс? Гораздо больше, чем время которое тратит фотон, прилетая к нам из-за горизонта, т.е. более четырнадцати миллиардов лет или 4,2 х 10 24 лет. А какие потери энергии его заряда движения? Экспериментально установлено, что за время (14 миллиардов лет) движения фотона очень длинного пути из самых окраин Вселенной он «краснеет» всего лишь до z – 7 или 8.

Другими словами, бесструктурной точечной пассивной массы электрон не имеет, а имеет импульсно обновляемый контур-волновод определённых размеров из зёрен-гравпотенциалов, который и создаёт суммарный заряд гравитационным потенциалом – заряд массы. При обновлении волновода предыдущий излучается, создавая внешнее гравитационное поле, которое взаимодействует с центральным гравитационным полем Земли. Поэтому он инертен и имитирует собственный заряд массы. Точно также внешний направленный волновод из зёрен-электропотенциалов формирует суммарный заряд отрицательного электрического потенциала и направление спина электрона, а также и его внешнее электростатическое поле. При этом следует заметить, что динамизм излучения внешних полей электрона последовательно вихревой разных по значению зёрен-потенциалов – ближе к узлу находятся большие значения и выталкиваются с большей скоростью, а в пучности уменьшаются до нуля. Поэтому они разные и по дальнодействию, и по разному проявляют свои свойства относительно кластерообразования газоподобного электрического эфира, изучением которых и занимался Тесла.


Замкнутые магнитные монополи в атоме – это первое, после элементарных частиц и атомных ядер, составное и архитектурно оболочечное соединение, созданное природой по известным законам электростатики и магнитных монополей. Это произведение природы следует отнести к первым продуктам самоорганизации вещественных структур – форма интеграция энергии в состоянии покоя. Самые первые продукты – это атомы водорода и гелия, представленные на фото 12.


Фото 12. Схема электрических полей атомов водорода и гелия в мгновенном состоянии пульсаций всех их магнитных монополей.


В силу структур внешней оболочки протона и электрона, образовавшийся с помощью холодной безмассовой плазмы атом водорода имеет асимметричное внешнее электрическое поле, которое не полностью скомпенсировано полем электрона. Это обусловлено тем, что частота ядерных монополей ГЭММ на три десятичных порядка выше электронных и соответственно плотность положительных электрических зёрен-потенциалов больше.

Отсюда следуют и его оригинальные свойства, как на ядерном уровне в форме дейтрона и тритона, так и на молекулярном. Например, молекула водорода, состоящая из двух атомов очень устойчива и может распасться только при очень высоких температурах – от 2000 до 5000˚ С. Имеются и два состояния молекулы водорода, в зависимости от взаимной ориентации ядерных спинов – ортоводород и параводород. С другой стороны, имеется атом гелия (фото 12), ядром которой служит известная в ядерной физике альфа-частица. Внешнее поле настолько симметрично и плотно экранировано структурами двух электронов, что этот атом проявляет чудеса инертности в химических (электрических) взаимодействиях – он полностью пассивен. Эти свойства электронов – создавать полный экран из полей электронов вокруг положительного поля ядра для компенсации его поля (невидимость) в третьем внешнем поле, как творение природы, специально приведены здесь для возможности анализа в последующих разделах рукотворного построения аналогичных структур компенсации заряда массы (без разрушения её структуры и инертности движения) кластеров антигравитационным зарядом для организации технического безынерционного и «невидимого» движения «тарелок» в третьем поле.

Нейтроны и другие нейтральные ядра на определённых гравитационных поясах начинают распад, движение и последующую стабилизацию вблизи твёрдой поверхности Земли. В результате образуются достаточно стабильные положительные ядра и стабильные отрицательные электроны. Стабильность тех и других уже достаточна для охлаждения и рекомбинации друг с другом, с образованием долговременных структур атомно-молекулярного вещества. Атомы химических элементов – это синтезированные составные дискретные микропространства-поля, образованные из двух электростатически противоположно заряженных и концентрически расположенных сферических частей с размерами центральной части ~ ядра 10—13 и нескольких электронов с характеристическим размером 10—10 см, входящих в состав сферических оболочек, находящихся в слое сферического слоя микропространства атома размером-диаметром ~ 10—8 см. Другими словами, из двух свободных частиц с указанными размерами, движущихся навстречу друг к другу с разными, но определенными скоростями, образуется путём захвата и слияния связанная, но возбуждённая частица-атом, с размером сферы своего микропространства, совпадающей с соответствующими размерами замкнутых дебройлевских длин волн указанных частиц. Причем по устойчивости атомы слабее ядер более чем 107 раз.

Структура этого нового микропространства, пожалуй, самая сложная из всех известных. Например, известно, что каждый электронный слой оболочек атома из K, L, M, N и т.д., начинается с S-оболочки (фото 12, гелий), на которой удерживаются только не более двух электронов и то с противоположными спинами. Каждая последующая оболочка того или иного слоя имеет вполне определенное максимально возможное значение числа электронов, размещенных на ней. Так, например, у атома алюминия (Z = 13) в слое K имеется лишь одна оболочка S с двумя электронами, в слое L – две, S и Р оболочка с 2 и 6-ю электронами соответственно, а в слое М – 2 электрона на S-оболочке и один электрон на Р-оболочке. У атомов с бóльшим порядковым номером верхние слои имеют D и F оболочки, на которых может быть размещено от десяти и более электронов. Такая структура атомного микропространства носит ярко выраженный ячеисто-сферический характер с центром в виде положительно заряженного ядра, окруженного волноводами электронов, зафиксированными в определенных слоях и специальным образом уложенных на поверхности оболочек. Такое размещение электронов обусловлено исключительно полуцелым спином электронов и гибким изменившимся его волноводом, как «спрутом» охватившим часть сферы диаметром с дебройлевской длиной волны этого связанного электрона. Структура атома представлена на фото 12—13.


Фото 13 Схема внешней оболочки атома


У водорода на такой сфере размещён только один электрон. У гелия (фото 12) два электрона размещены на этой сфере таким образом, чтобы центральное поле электрического заряда ядра «видело» максимальную поверхность волноводов этих электронов не только ближайшей поверхности, но и последующих по мере возрастания радиуса. В данном случае это достигается диаметрально противоположным расположением. Когда ядро обладает более значительным зарядом электрического потенциала, то на оболочке большего диаметра появляется больше свободной поверхности для размещения большего количества электронов. Так, например, у алюминия на втором слое, во второй p-оболочке может на поверхности сферы разместится уже 6 электронов. Эти электроны равномерно перекрывают своими волноводами всю поверхность этой оболочки. Поэтому на поверхности оболочек большего диаметра их число резко возрастает. Такая структура атомов возможна лишь в достаточно свободном пространством, какое имеется на поверхности планет и звёзд, но такая структура реально невозможна в глубине нижней мантии Земли, где благодаря очень высокому давлению отсутствует достаточно свободное пространство для образования перехода нейтрона с объёмом соответствующим размеру 10—13 см в объём атома водорода с размером радиуса 10—8 см, но возможно образование мю-атомов водорода, энергия которых может лишь представляться не температурой вращательно-колебательных состояний, а только вращением.

Рассмотренная структура размещения электронов в соответствующих оболочках полностью исключает всякое орбитальное движение электронов в пространстве вокруг ядра. Орбитальное движение электронов, как и движение электрона из возбуждённого состояния атома в основное состояние атома должно приводить к излучению дебройлевских волн, что наблюдается на практике высвечиванием оптических фотонов, но не наблюдается для атомов, находящихся в основном состоянии.

Запись, отражающая распределение электронов в атоме химического элемента по энергетическим уровням (слоям) и подуровням (оболочкам), называется электронной конфигурацией этого атома. Так, например, выше рассмотренная конфигурация атома алюминия может быть представлена, как 1s2 2s2 2p6 3s2 3p.

В основном (невозбужденном) состоянии атома все электроны удовлетворяют принципу минимума потенциальной энергии. Это значит, что сначала заполняются слои, для которых:

– главное квантовое число «n» минимально,

– внутри одного слоя сначала заполняется s- оболочка, затем p- и лишь затем d и т. д.,

– заполнение происходит так, чтобы (n + l) было минимально,

– в пределах одной оболочки электроны располагаются таким образом, чтобы равномерно своими волноводами покрыть всю поверхность этой оболочки не соприкасаясь друг с другом,

– заполнение электронных атомных оболочек выполняется в соответствии с принципом Паули.

Атомные микропространства проявляют весьма характерные свойства. Например, атом водорода способен поглощать или излучать вполне определенные серии фотонов. Это так называемые характеристические серии Бальмера, Пашена, Лаймана и т. д. При поглощении фотонов из этой серии, электрон переходит из 1S состояния в другие, более высоковозбужденные состояния – 2Р или 3S и т. д. У атома гелия возможностей еще больше – у него два электрона 1S2. Если возбужден только один электрон – 1S2S или 1S3Р и т.д., а если оба – 2S2 или 2Р3S и т. д. Что это значит? Это значит, что при поглощении энергии магнитным монополем электрона, он переходит в потенциальном поле ядра на более далёкое расстояние от него, которые называются ридберговскими состояниями атомов.

Главный вопрос. Почему при рекомбинации протона с электроном, последние не падают друг на друга, как противоположные заряды, а остаются в противостоянии друг другу на расстоянии 10—8 см, с образованием устойчивых атомов?

Как было уже показано на примере нейтрона, в процессе его распада, из него уносится энергия 1,29 Мэв в форме частиц (электрона-0.511 Кэв и антинейтрино) и кинетической энергии, распределенной между ними. Эта унесенная энергия и является тем барьером противостояния, который электрон благодаря своему стабильному существованию в виде полусферы радиусом 2,4 х 10—10 см размещён в атоме (фото 1) при нормальных условиях радиусом 10—7—10—8 см, и поэтому не может упасть на поверхность протона. По той причине, что размер волноводов электрона (фото 12) на три десятичных порядка превосходит внешний волновод любого атомного ядра, т.е. чем меньше масса микрочастицы, тем больше размер-диаметр его волноводов в полной аналогии со свойствами ЭМВ – чем выше энергия, тем короче длина волны и выше частота вихрона. Магнитный монополь электрона может жить только на поверхности сферы-полусферы указанного радиуса. Можно образно сказать, что энергия в вихревых полях атома, представленная формой материи холодной плазмы, проявляется в виде слоя сферического пространства – барьер.

Поэтому дебройлевская полусфера-волновод связанного атомного электрона не может физически «упасть» в центр – она способна лишь окружить его. Эта же причина является основой образования всех атомов таблицы Менделеева. И именно этот факт доказывает путь рождения всех атомных ядер, как и путь протона. К великому сожалению на коллайдерах и на других технических установках пока не научились получать плазму вихронов с энергией, позволяющей получать нейтральные ядра с большим атомным весом, чем масса нейтрона. Это позволило бы проанализировать тип и вид распада, а также возможность синтеза искусственного атома. С другой стороны, известно, что размер мюона соизмерим с внешними оболочками ядер, и поэтому присоединением мюона к ядру (мезоатом) осуществляется его приближение к ядру в 207 раз ближе, чем для электрона.

Атом в целом электрически нейтрален. Механизм электронейтральности поясняется схемой, представленной на фото 14.


Фото 14. Схема внутренних электрических полей атома с образованием зоны холодной плазмы.


Ядро атома имеет положительный заряд электрического потенциала и соответственно излучает в 4π вокруг себя поток положительно заряженных зёрен-потенциалов. Оболочки из электронов, образованные на расстоянии-радиусах от 0,5 – 15 х 10—8 см, постоянно обновляются магнитными монополями с рождением экранирующего облака-потока отрицательно заряженных зёрен-потенциалов. Внутри атома образуется динамическое равновесное микропространство-поле, заполненное двухзнаковым электрическим эфиром, уничтожаемым в зоне электрической холодной безмассовой плазмы. Противоположно заряженные потоки зерен-электропотенциалов аннигилируют с образованием силовых линий электрического поля и уничтожением пространства, что приводит к притяжению источников их породивших и фиксации параметров атомного пространства путём рождения и обновления холодной плазмы из безмассовых электрических зёрен-потенциалов с противоположными знаками. Нескомпенсированный электрический эфир, рождённый высокой, но разной частотой соответствующих магнитных монополей, может выводится из межатомного пространства при сильной поляризации вещества большими по значению электрическими потенциалами, существующими для связи в атоме, и способен к образованию энергии в форме освобождённого заряда электрическими зёрнами-потенциалами с последующим его захватом и преобразованием в электрический холодный ток технологиями Н. Тесла, Э. Грея и И. Копеца.

Отсюда следует жизнь и существование зарядов электрическим потенциалом ещё в одной форме, характеризующей наличие уже трёх зон атомного пространства в том числе и в активной аннигилирующей форме, приводящей к наличию в нём двухзнакового эфира зоны холодной безмассовой плазмы из противоположных зёрен-электропотенциалов обоих знаков.

Аналогична по рождению и уничтожению магнитная холодная безмассовая плазма, которая проявляется притяжением полюсов стационарных магнитов.

Однако гравитационное поле, порождаемая в основном ядром атома, излучающим более дальнодействующие и однознаковые зёрна-гравпотенциалы, отличается по свойствам тем, что образует холодную гравитационную безмассовую плазму лишь взаимодействием с центральным противоположным по знаку полем Земли, проявляя у атома заряд массы в СИ.

Поэтому снаружи атома внешнее электрическое поле ядра полностью скомпенсировано внешними полями электронов, размещённых на фиксированных оболочках. В связи с этим, у атомов появляется возможность объединяться в кластеры вещества, вплоть до жидкости и твёрдого тела. Однако у металлов внешние валентные электроны атомов почти свободны и образуют в больших массивных кластерах облака свободного отрицательно заряженного электрического эфира, который по технологиям Н. Тесла, Э. Грея, Т. Морея и многих других можно захватывать и преобразовывать специальными схемами в холодное электричество34, образуя независимые и автономные источники питания.

Совсем по-другому ведет себя однополярный гравитационный эфир излучаемый замкнутыми оболочками атомного ядра. Вследствие высокой плотности атомного ядра такой эфир более дальнодействующий и проникающий, поэтому он выходит не только наружу атома, но и кластера в целом, формируя внешнее гравитационное поле такого атомно-молекулярного вещества. Это поле взаимодействует с центральным полем тяготения Земли и проявляет таким взаимодействием и у атома, и кластера из таких атомов, свойство массы и инертности, хотя в природе атом не имеет массы.

Атомы, их атомные ядра и электроны проявляют магнитные свойства, но разные и в разных формах, что позволяет широко применять метод Ядерно-магнитного резонанса – спин ядра в атомах углерода равен нулю, а в атомах водорода полуцелый и т.д., спин электрона полуцелый, а его магнитный момент больше чем у атомных ядер и т. д. Несмотря на то, что магнитные монополи широкого частотного спектра являются строителями атомов и его элементов (ядра и электроны), и при таком производстве «отходами» является его двух знаковый невидимый магнитный эфир, образующий магнитные моменты атомных ядер и электронов, его до сих пор не могут зарегистрировать и проявить. Однако, как и в случае с электрическим эфиром, если использовать известные методы намагничивания некоторых металлов и их сплавов, например, метод Лидскалнина, то удаётся выделить потоки магнитного эфира даже из обычного стержня железа, при этом намагниченный стержень становится постоянным магнитом на достаточно долгое время. А его магнитный эфир из зёрен-потенциалов проявляет себя в виде потоков из полюсов стационарных магнитов и занимает промежуточное свойство по дальнодействию и проникающей способности по сравнению с электрическим и гравитационным эфиром.

На страницу:
9 из 11

Другие книги автора